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Abstract

I introduce a new method for validating models – including stochastic models – that
gets at the reliability of a model’s predictions under intervention or manipulation of its in-
puts and not merely at its predictive reliability under passive observation. The method is
derived from philosophical work on natural kinds, and turns on comparing the dynamical
symmetries of a model with those of its target, where dynamical symmetries are inter-
ventions on model variables that commute with time evolution. I demonstrate that this
method succeeds in testing aspects of model validity for which few other tools exist.

1 Introduction

Scientists of all stripes are in the business of building models as tools for predicting, controlling,
and explaining phenomena. For each of these purposes, it is generally not sufficient that a model
merely “save the phenomena.” That is, it’s not enough that a model successfully summarize
the data already in hand. Rather, the model builder wants some sort of assurance that the
model accurately represents the world, at least with respect to those features pertinent to
her epistemic goals. The most common approaches to establishing such a warrant of reliability
focus on comparing features of the solutions or predictions of a model and states (or time-series
of states) of the world. For example, one would typically validate a regression model that
predicts lifetime earnings on the basis of socioeconomic factors like education by comparing
the model’s predictions against a collection of fresh data not used in its construction. The
more such predictions match, the more confident we are in the model, at least as a tool for
prediction.

While the bulk of statistical tools are designed with such comparisons in mind, there is
often value in comparing relations amongst accessible states (or relations amongst time-series
of states) rather than states themselves. That is, it can be helpful to ask whether the change
in a model’s prediction given a change in input or initial conditions matches the change in the
target system given a corresponding change in it’s initial conditions or external inputs. This
sort of relation is exactly what one needs to know if a model is to be used for control. That
is, if one wants a model to reliably reflect causal relations amongst variables – as opposed
to offering purely correlative predictions – it is essential to verify that its gets these relations
right.

In this paper, I introduce a new approach to validating dynamical models – including
stochastic models – using ‘dynamical symmetries’. This method is focused not on static features
of states or time-series, but rather on relations amongst such things under changes in input or
initial conditions. This is a tool for checking the causal information explicitly or implicitly
contained in a model, and is therefore useful for validating models for control as well as
for prediction. My narrow aim is to argue that this method is, in many circumstances, an
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unusually powerful tool for model validation that gets at causal structure in a way most
statistical methods do not. More broadly, I want to suggest that the success of this method
is evidence of the practical, methodological relevance of philosophical work on natural kinds.
Consequently, the technical results presented here amount to a sort of advertisement for the
mutual benefits philosophers, applied mathematicians, and data analysts can offer one another.

To meet these aims, the rest of the essay is laid out as follows. In Section 2, I clarify the
problem of model validation, and present a concise but somewhat more detailed overview of
standard methods that focus on comparing static properties of model solutions or predictions
with single measurements of the target system. This is then contrasted with what I call
“structural approaches” that consider relations amongst model predictions. I summarize a
variety of methods that are plausibly viewed as structural. In Sections 3 and 4, I introduce
the theory of dynamical symmetries, and present previously published methods for comparing
them for different systems given empirical data. In Section 5, I outline the way in which
comparison of dynamical symmetries can be used as a powerful tool for model validation, and
illustrate the method in a variety of contexts with concrete examples. Finally, I conclude with
a discussion of the scope and limitations of this new method.

2 The problem of validation

2.1 Verification and validation

Any model – if it is to be useful for predicting or controlling its target system – needs both
verification and validation. Verification is the process of assessing whether a given model
possesses the intended properties. That is, does the actual instrument or mechanism for
generating predictions instantiate that which was intended; do the outputs instantiate the
intended mapping from inputs? Verification is not a significant concern in the case of analytic
models, since there is generally little doubt that a set of equations is in fact the set intended. It
becomes critical, however, when numerical approximations are used in extracting predictions
or solutions from the equations, and even more pressing in the case of complex computational
models. It is not at all obvious that a program correctly implements the numerical integration
of a set of equations, or represents the intended set of functional relationships between variables.
It is even less clear whether a multi-physics or agent-based model captures the intended set of
approximations of law-like interactions amongst constituents. Verification poses a fascinating
collection of epistemic problems, and there exist large literatures on model verification in
engineering, software development, and mathematics.1 However, for the purposes of this essay,
I’ll set aside the problem of verification, and assume that models are correctly implemented.

Validation concerns the accuracy of the model in representing the intended aspects of the
target. There are three principal senses in which a model can be accurate. First, it can more
or less successfully describe the target system. That is, it can reproduce the known data with
varying degrees of fidelity. Second, it can more or less accurately predict passively observed
features of the target system at later times, or for different boundary conditions or inputs.

1For an influential engineering perspective, see (Balci 1994). For a recent and comprehensive overview of both
software and systems modeling aspects from the National Research Council, see (Committee on Mathematical
Foundations of Verification, Validation, and Uncertainty Quantification 2012). For a pithy and very current
overview of verification in the world of software design, see (Wilcox 2018). Finally, for an accessible and
illuminating discussion of the state of the art from the perspective of applied mathematics, see (Fillion 2017).
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And finally, it can more or less accurately predict the behavior of the target system under
interventions or alterations of the environment, boundary conditions, or input. The first two
tend to be the focus of many standard statistical methods. The novel method described below
concerns the third.

There are, of course, many kinds of models with distinct epistemic aims, and the suitability
of a particular method of validation will depend on the kind of model under consideration. The
method below is appropriate for models in which each variable varies continuously, possibly as
a function of other variables in the system. Of particular interest are dynamical systems, i.e.,
systems that change through time. The bulk of the examples below will deal with systems for
which the values of variables change continuously over time.

A brief word on terminology is also important. The term “model” tends to be used in
subtly different ways in different disciplines – ecologists tend to use the term differently than
machine learning practitioners, and the same group tends to use the term differently depending
on context. For clarity, I will use the term as follows: a model is the specification of a class
of mappings from input to output.2 The mappings may be via an explicit function or set of
equations (as in differential models of thermodynamic phenomena) or via simulations of varying
complexity. To produce an output, a model requires two things: (1) a set of parameter values,
and (2) a set of inputs. Parameters are understood to represent features of the target system
that may vary from system to system but do not vary for a given system. The intrinsic growth
rate of a population or the Young’s modulus of a given material are examples of parameters.
Sometimes these can be measured independently, but often have to be estimated from data
about other properties of the system that depend upon these parameters. Inputs are a set of
initial or boundary conditions that can differ across time or contexts for a given system. The
temperature of a reaction vessel or the current population size are typical inputs for chemical
engineering or ecological models, respectively. I will refer to a particular output for a given
input and choice of parameter values as a solution of a model.

2.2 Static fit approaches to validation

There are a wide variety of methods for model validation that appeal to a single output of
the model and one or more datasets. If the model is designed to make point estimates –
e.g., of a particular property of the target system such as the ionization energy of a molecule,
the vibration frequency of a nano-beam, or the biodiversity of a region – then a wealth of
standard statistical hypothesis testing methods are available. In the classical mode, these
involve choosing a test statistic (e.g., χ2), computing the distribution this statistic should have
under the hypothesis that the model is correct, and then deciding whether the value of the test
statistic for a set of validation data is sufficiently unlikely to reject the adequacy of the model.
The procedure and interpretation of results are a bit different from a Bayesian point of view,
but the emphasis remains on comparing a single model output with a validation data set. See
(Ling and Mahadevan 2013) for a recent overview of both approaches to validating models in
the case of point estimates. What’s relevant to the discussion here is that no consideration is
given to the answers the model would give under different inputs. That is, the model typically
has parameter values and boundary conditions estimated from one data set, and a single point

2Note that this terminology is at odds with machine learning, where each specific set of parameter values
constitutes a model. What I’m calling a model is, in the context of machine learning, or statistical learning
theory a space of hypotheses or class of models.
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estimate is tested with a second dataset from the same target system in the same configuration.
There is no attention paid to how the model’s estimate varies with variations in properties or
initial states of the target system.

Of course, point estimates are just one special class of model output. Many models explicitly
represent one or more functional relations amongst variables. The simplest such model is a
regression curve (a functional form fit to a single dataset), but one could include simulations
and agent-based models in this category. For models like these, it is typical to construct the
model using a single data set describing the target system under one set of initial conditions.
For example, one could measure the growth of bacteria on a petri dish over time, and then use
that data to assign values to parameters in a model that proposes an exponential functional
relationship between time and population. Once the parameters of the model have been set,
the predicted curves relating variables of the model are compared, either to the original dataset
or to a validation dataset taken under identical conditions (often, one simply splits the original
dataset into training and testing pieces).

There are a variety of approaches to comparing the curve predicted by a model with data
from a target system. Commonly, simple measures of agreement, such as the Sum of Squared
Errors (SSE) or the coefficient of determination (R2) are deployed to assess how well the model
captures the variation in the data. For example, Fujikawa, Kai, and Morozumi (2004) use the
Mean Squared Error (MSE) – given by SSE/n where n is the number of samples – as a measure
of goodness of fit for their growth model.

By themselves, these measures of fit only get at how well the model describes the target
system (in one particular context). This is the first, descriptive sense of validity I mentioned
above. To get a sense for how well the model is likely to generalize (how reliable it will be for
prediction) we need other tools. Analysis of residuals is one such tool. More specifically, the
distribution of the errors (the differences between values predicted by a model and the actual
data) can tell one a lot about whether there is systematic error in the model of the sort that
would impugn its ability to make accurate predictions outside the original data. Methods of
residual analysis include hypothesis tests for bias (the errors all tend to be in one direction),
skew (there is a trend in the errors, even though there may be no bias), and curvature (there
may be no bias or skew, but the envelope of the errors exhibits curvature around the correct
values) (see (Rhinehart 2016, , ch. 16) for a concise overview).

When we turn our attention to stochastic models, validation gets more complicated, at
least insofar as we continue to directly compare particular model outputs with acquired data.
This class of model has received less attention with respect to methods of validation, and the
literature on modeling across disciplines harbors a consensus that it’s difficult, particularly
when data is limited. This difficulty seems to have stymied the emergence of anything that
would be considered a standard method. As McCarthy and Broome (2000, p600) put it, “there
are no established methods for validating stochastic population models, but useful methods
are required.”

Some useful methods include generalizations of those described above for the deterministic
case. In the most straightforward approach, one would compare predicted distributions of the
dependent variables (e.g., population size) for each value of the independent variables (e.g.,
time) with the observed data. But this requires many replicates of the target system so that
such distributions can be estimated. That sort of data is usually not forthcoming. Typically,
all one has for comparison is one or a few series of measurements, with at best a handful of
measurements for each value of the independent variable. But a variety of approaches have
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been proposed to overcome this difficulty. For example, Sokal and Rohlf (1994) propose a
method of ‘standard deviates’ for assessing whether the stochastic variation predicted by a
model coincides with a dataset. This is, in fact, the method used by McCarthy and Broome
(2000) for a model of population viability (i.e., of the risk that a population will go extinct).
The salient point is that this method and others like it still focus on features of a single output
of a model.

This is not quite the case for cross-validation, a powerful tool for validating both deter-
ministic and stochastic models. This technique iterates partitioning of the data into training
and testing portions in order to estimate the error of a model on unobserved data.3 Roughly,
cross-validation provides an estimate of the generalization error of a model4 by assessing how
well a model, after being fit to a sample of data from a system, will do in predicting unseen
data. Cross-validation thus does not focus on a single solution of a model, but rather the
reliability of the model (and the method for setting its parameter values). Nonetheless, it is
indifferent to the way in which model solutions relate to one another. Similarly, the method
of “active nonlinear tests” (Miller 1998) amounts to probing the space of parameter values
and inputs to assess the robustness of features of a model’s output to variations in parameter
values, and the model’s stability and plausibility for inputs not observed. Here again, there
is no attention paid to the details of how solutions relate to one another, only how robust a
given solution is to variations of model features.

Why is this problematic? If the aim is prediction, it’s not a problem at all. These are all
effective approaches to predictive validation. But if one wants to be confident that a model
which fits a given data set will get its predictions right when someone intervenes and changes
the boundary conditions or inputs, more is needed.

2.3 Structural approaches to validation

Some models do aspire to capture more about a target system than is necessary to predict
its behavior under passive observation. In particular, some models are intended to capture
something about the structure of a target system, and the extent to which they do so has
been called the “structural validity” of a model (see, e.g., Zeigler, Praehofer, and Kim 2000,
ch. 2).5 In the dynamical systems, engineering, and operations research literatures, the notion
of structural validity seems to have a rather narrow and stringent sense. A model is only
structurally valid if the structure of the model is isomorphic to that of the target system.
As Zeigler, Praehofer, and Kim (2000, p31) put it, saying that a model is structurally valid
“. . . means that the model not only is capable of replicating the data observed from the system,
but also mimics in step-by-step, component-by-component fashion the way in which the system
does its transitions.”

This sort of validity can be assessed in a variety of ways.6 What Barlas (1996) calls

3Most textbooks on machine learning include descriptions of cross-validation. An especially lucid presentation
can be found in (Flach 2012, ch. 12).

4The estimate of the generalization error of a model is biased for cross-validation, but in the direction of
over-estimating the error (see Hastie, Tibshirani, and Friedman 2009, ch. 7.10).

5Attention to structural validation is curiously discipline dependent. Concepts (such as those pertaining to
testing “white-box” models in systems engineering) seem to have relatively little penetration in other fields such
as ecology. This is probably partly due to the quantity and precision of data available in these different fields.
Structural tests tend to be data-hungry or to require manipulations of the target system that are not available
to, e.g., field ecologists.

6See (Barlas 1996) for a widely-cited review.
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“structure-oriented behavior tests” include a variety of comparisons of those qualitative features
of a model thought to be tied to its structure with those of the target system. For example,
one can assess how well a model captures temporal patterns in the target system such as the
period, phase, and amplitude of oscillatory behavior, or the presence of trends (Barlas 1989).
A failure of the model to generate periodic behavior of approximately the right frequency, for
instance, might suggest that a feedback in the structure of the model is incorrect. Another
sort of structure-oriented behavior test involves assigning extreme values to model inputs or
parameters and comparing the resulting output to the behavior of the target system under
correspondingly extreme conditions.7 Note that to conduct this sort of test with respect to
parameter values, the parameters must be meaningful (and both measurable and manipulable)
outside of the model.

In “direct tests”, one attempts to establish the accuracy of structural components of the
model (e.g., the existence and values of certain parameters) by directly testing hypotheses
about these components against experiments on the target system, or even established knowl-
edge in the relevant field. For example, one might attempt to empirically ascertain whether the
form of the equations in an equation-based model match the functional form of the relations
among variables in the target system (Barlas 1996).

Whether by direct or indirect approaches, structural validation in the narrow sense is often
the wrong epistemic goal. Narrow-sense structural validity is frequently more than one needs to
meet the epistemic aims of modelers. That is, there is a broader sense of structural validity that
gets at what a model needs in order to accurately characterize the behavior of system under
intervention or manipulation, and nothing more. In this broader sense, a model is structurally
valid if it correctly characterizes the change in a behavior of a system under changes in inputs
or boundary conditions. Whether the model does so in the same way the target system does
is irrelevant.

Presumably, if a model is structurally valid in the narrow sense, then it is structurally valid
in this broader sense as well. But the broader sense is easier to satisfy in that it doesn’t matter
how a model captures this information, only that it does. Consequently, tests that reject this
sort of validity rule out a bigger class of potential models in one go. And yet, so far as I
can tell, it is largely neglected in the model validation literature. Of course, the entire field
of causal discovery is concerned with methods for building models that capture structure in
something like this broad sense (see, e.g., Spirtes, Glymour, and Scheines 2000). But those
models tend not to capture the sort of fine-grained temporal detail that engineers or dynamical
systems folks are interested in. Nor do methods of causal discovery directly help us to validate
existing models that use, e.g., differential equations or complex agent-based computations.
When I say that scant attention is paid to broad-sense structural validity, I mean there are few
if any tools in the modeling literature for validating models of arbitrary structure – especially
dynamical models – with respect to counterfactual behavior. No one looks at which changes in
model behavior follow from changing conditions or inputs, and whether this pattern of change
(reflective of causal structure) matches the world. This is, however, exactly what a comparison
of dynamical symmetries can do for us.

7Balci (1994) calls this “stress testing.”
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3 Dynamical symmetries

3.1 Theory

As I indicated above, the new approach to validation described here is focused on the structure
of a model or, more specifically, on the relations among solutions of a model that are implied
by its structure. The important set of relations are what I previously dubbed dynamical
symmetries (2014). Qualitatively, a dynamical symmetry is an intervention on one more
variables in a system that commutes with the incrementation of another variable in the system.
More precisely, I define a dynamical symmetry as follows (Jantzen 2017):

Definition 1 (Dynamical symmetry). Let V be a set of variables and Ω be the space of states
that can be jointly realized by the variables in V . Let σ : Ω → Ω be an intervention8 on the
variables in Int ⊂ V . The transformation σ is a dynamical symmetry with respect to some
index variable X ∈ V − Int if and only if σ has the following property: for all values xi and xf
of X and for all initial states ωi ∈ Ω, the final state of the system ω̃f ∈ Ω is the same whether
σ is applied when X = xi and then an intervention Λxi,xf : Ω → Ω on X makes it such that
X = xf , or the intervention on X is applied first, changing its value from xi to xf , and then
σ is applied. This property is represented by the following commutation diagram:

ωi
σ−−−−→ ω̃i

Λxi,xf

y yΛxi,xf

ωf
σ−−−−→ ω̃f

(1)

For example, suppose we have a pressure tank full of fluid and attached to a pump that
can increase or decrease the pressure in the tank. Inside the fluid-filled pressure tank, there is
a vertical rail on which is mounted a pressure gauge. Initially, this gauge is at the top of the
tank where the pressure is P . If we use h to represent the depth of the gauge relative to the
top of the tank and p to indicate the pressure read by the gauge, then at the outset, h = 0 and
p = P . Now consider two different sequences of interventions on this system. In the first, we
leave the gauge where it is, and then turn on the pump until the pressure at the gauge is P +c.
Then we lower the gauge until it is a distance hf below the top of the tank. At that point, it
reads a pressure of P + c + ρghf , where ρ is the density of the fluid in the tank and g is the
gravitational constant (9.81 ms−2). This sequence of manipulations and results is summarized
in Table 1.

Now suppose that we start over with our tank in the same initial state, and reverse the
order in which we manipulate the pump and the gauge. That is, suppose we first lower the
gauge so that its depth relative to the top of the tank goes from 0 to hf and then turn on
the pump to increase the pressure at the gauge by an amount c. As Table 2 indicates, we
end up in exactly the same final state after performing these actions. Thus, increasing the
pressure at the gauge by an additive constant is a dynamical symmetry with respect to the
index variable h. Note, however, that scaling pressure by a multiplicative constant (i.e., an
intervention of the functional form σ(P ) = kP ) is not a dynamical symmetry. The result of

8As indicated in (Jantzen 2014), I am using the term “intervention” in its technical sense as it appears in
the literature on causation. In this context, “. . . an intervention on X (with respect to Y) is a causal process
that directly changes the value of X in such a way that, if a change in the value of Y should occur, it will occur
only through the change in the value of X and not in some other way”(Woodward 2001).
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Table 1: Sequence of states when pressure is adjusted by an additive constant first and then
the gauge is lowered a vertical distance hf .

p h

P 0
P + c 0
P + c+ ρghf hf

Table 2: Sequence of states when the gauge is first lowered a vertical distance hf and then the
pressure is adjusted by an additive constant.
p h

P 0
P + ρghf hf
P + c+ ρghf hf

applying transformations of this sort in either order with respect to moving the gauge is shown
in Tables 3 and 4. Unlike in the additive case, the bottom rows of these two tables are not the
same.

Since many models of interest are models of dynamical systems in the more restrictive
sense of variables that evolve through time under a fixed law, I offer the following definition of
a special dynamical symmetry (Jantzen 2017):

Definition 2 (Dynamical symmetry with respect to time). Let t be the variable representing
time, and let V be a set of additional dynamical variables such that t /∈ V and Ω is the space
of states that can be jointly realized by the variables in V . Let σ : Ω → Ω be an intervention
on the variables in Int ⊆ V , and Λt0,t1 the time-evolution operator that advances the state
of the system from t0 to t1. The transformation σ is a dynamical symmetry with respect to
time if and only if for all intervals ∆t and initial states ωi ∈ Ω, the final state of the system
ω̃f ∈ Ω is the same whether σ is applied at some time t0 and the system evolved until t0 + ∆t,
or the system first allowed to evolve from t0 to t0 + ∆t and then σ is applied. This property is
represented by the following commutation diagram:

ωi
σ−−−−→ ω̃i

Λt0,t0+∆

y yΛt0,t0+∆

ωf
σ−−−−→ ω̃f

(2)

Table 3: Sequence of states when pressure is adjusted by a multiplicative constant first and
then the gauge is lowered a vertical distance hf .

p h

P 0
kP 0
kP + ρghf hf
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Table 4: Sequence of states when the gauge is first lowered a vertical distance hf and then the
pressure is adjusted by a multiplicative constant.
p h

P 0
P + ρghf hf
k(P + ρghf ) hf

For example, consider a microbial population whose growth is governed by:

dx

dt
= rx

(
1− (x/k)2

)
. (3)

Such a population exhibits a whole family of dynamical symmetries with respect to time.
Specifically, if we take an initial population of x0 and add or subtract enough microbial stock
to raise the population to

kepk
2
x√

k2 − x2 + e2pk2x2
, (4)

for any real value of p, and then allow the colony to grow for an hour, we would end up with
the same final population size as if we allowed the population to grow for an hour starting
from x0 and then added (or subtracted) enough to scale the result according to Equation 4
(with the same value of p).

3.2 Motivation and generalization

The dynamical symmetries of a system depend upon and thus reflect its detailed causal struc-
ture. But dynamical symmetries are just one sort of feature of the causal structure of a model,
and there are indefinitely many other features of causal structure that one could deploy for
structural validation. So why focus on this one? There are at least three reasons to do so. The
first is theoretical relevance. The notion of a dynamical symmetry is central to a general theory
of projectible kinds (Jantzen 2014). Projectible kinds are categories or ways of binning portions
of the world that are narrow enough that the members of a category share sufficient features
in common to support generalizations of the sort we tend to call laws of nature, but broad
enough to encompass sufficient variety in the world to make the law useful. In (Jantzen 2014),
I propose that we use symmetry structures – collections of dynamical symmetries along with an
algebra describing how these dynamical symmetries interact under composition – to pick out
projectible kinds. Two systems belong to the same projectible kind (what I call a dynamical
kind) just if they exhibit all of the same dynamical symmetries, and these dynamical symme-
tries compose with one another in the same way. The categories picked out by dynamical kinds
align well with those carved out informally by scientific practice. For example, the categories
corresponding to the order of a chemical reaction are also dynamical kinds. So all reacting
systems that obey a first-order reaction rate law belong to the same dynamical kind. I argue in
(Jantzen 2014) that recognizing dynamical kinds as the sort of projectible kinds scientists are
after offers a variety of advantages for automated scientific discovery. In particular, systems
can be sorted into kinds without first learning detailed models of their dynamics. Thus, one
can learn how to delineate a new scientific domain pre-theoretically. The details are beyond
the scope of our present concerns, but the point is that a focus on dynamical symmetries in
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model validation is not arbitrary. Rather, it is motivated by a broader program in the logic of
scientific discovery.

The second reason is the specific nature of the relation of dynamical symmetries to causal
structure. In addition to the bare causal skeleton of which variable is a cause of which,
dynamical symmetries are sensitive to the functional form of relations amongst variables. This
makes them a discriminating tool for comparing models with target systems in a manner
relevant to fine-grained prediction and control.

The final reason for emphasizing dynamical symmetries, and perhaps the most practically
salient, is the extensibility of the concept. I’ll focus on one particularly important extension of
the basic notion of a dynamical symmetry: stochastic systems. As indicated above, stochastic
models of (presumably stochastic) target systems are difficult to validate with respect to their
predictive reliability. This is because there are more dimensions to a model’s output – where
before we had point values or trajectories of point values over time, now we have distributions
characterized by indefinitely many non-vanishing moments (e.g., mean, variance, skew, etc.).
Validating such models with respect to structure is even harder. But dynamical symmetries
can be generalized to the stochastic case in a way that makes their application to validation
straightforward.

So how do we extend the notion of dynamical symmetry beyond the deterministic case? In
(Jantzen 2017), I provide one proposal. Specifically, Definition 5 of that paper shifts the focus
from values of variables to distributions over variables. However, in hindsight it’s clear that
Definition 5 is ambiguous in important respects. I thus offer the following refinement:

Definition 3 (Dynamical symmetry). Let V be a set of random variables, Ω the set of states
that can be jointly realized by the variables in V , and Γ the space of probability distributions
over Ω. Let σ : Γ → Γ be an intervention on the variables in Int ⊂ V . The transformation
σ is a dynamical symmetry with respect to some index variable X ∈ V − Int if and only if
σ has the following property: for all initial joint distributions γi ∈ Γ and marginal probability
distributions f and g, the final joint probability distribution over V , γ̃f ∈ Γ, is the same
whether σ is applied when the marginal distribution over X is given by px(x) = f(x) and then
an intervention Λf(x),g(x) : Γ→ Γ on X makes it such that px(x) = g(x), or the intervention on
X is applied first, changing its marginal distribution from f(x) to g(x), and then σ is applied.
This property is represented in the following commutation diagram:

γi
σ−−−−→ γ̃i

Λf(x),g(x)

y yΛf(x),g(x)

γf
σ−−−−→ γ̃f

(5)

Note that this definition captures the deterministic dynamical symmetries as a special case
(at least insofar as one is willing to entertain degenerate probability distributions). As we’ll
see below, this more general notion of dynamical symmetry is useful because it allows us to
check the causal structure of a model against that of a target system, even when the underlying
dynamics is fundamentally stochastic.
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4 Comparing dynamical symmetries

The dynamical symmetries of two systems can be directly compared without first learning a
detailed model of how the variables of either system interact. The first published algorithm to
implement such a test appears in (Jantzen 2017). To use the algorithm one must, of course,
first obtain data about the dynamical symmetries to be compared. The most direct way to
do so is to acquire two time series for System A (and two more for System B) starting at two
different initial values. The initial values, let’s call them x0 and x̃0, must be the same for A and
B, though of course the rest of the time series may differ between them.9 It is a consequence of
the definition of a dynamical symmetry that, for systems that are deterministic, the function
which maps the points of one time series to the points of the other time series corresponding
to the same time is a dynamical symmetry. Furthermore, any two symmetry functions of a
given system that agree on the initial values (any symmetry functions that map x0 to x̃0) must
agree for the rest of the time-series.

The algorithm I reported in (Jantzen 2017) compares the dynamical symmetries exhibited
by System A and System B using such pairs of time series. In broad strokes, the algorithm
involves nested cross-validations. Cross-validation in general involves dividing the available
data into training and testing portions. In 10-fold cross-validation, one partitions the data
into 10 segments, nine of which are used for training and one of which is set aside for testing.
With the training data, a particular solution of the model is fit. Then the fit model is used to
predict the testing data, and the squared errors of these predictions are saved. Then the process
is repeated using a different element of the partition as the testing data and the remaining 9
elements for training. After each of the 10 data segments has been used once as the testing
data, the mean of the accumulated squared errors (MSE) is used as an estimate of the error
of the model (or really, of the model plus the method used for fitting a solution).

In my algorithm, the outer cross-validation loop estimates the errors for two different models
trained on data reflecting the dynamical symmetries exhibited by two systems of interest (call
them A and B). The first model – called sep for “separate” – assumes that the data represent
two different symmetries. That is, sep fits the data from A and B with two different and
independent sets of parameters. The other model – called joint – assumes that the data
from systems A and B derive from the very same dynamical symmetry, and fits a solution
involving only a single set of parameters. The inner cross-validation loop is used for fitting
polynomial models to the training data. Specifically, cross-validation is used to choose the
order of the polynomial that should be fit to the data. Higher orders can fit a training set
better but generalize poorly (in statistical parlance, they ‘overfit’ the data), and lower orders
ignore salient variations (they are overly ‘biased’). When the outer cross-validation is complete,
the algorithm declares the symmetries to be different just if the MSE of the joint model is
significantly larger than the sep model. That is, the dynamical symmetries are judged to be
different if cross-validation estimates a higher error when the data are treated as coming from
a single function than when they are treated as separate.

This algorithm was originally developed to compare symmetries of two physical systems.
In the next section, I demonstrate how it can also be used to structurally validate a model by
comparing the symmetries of the model with those of the target system.

9In principle, one could take a single long time series for each system and cut it in half to obtain two such
curves, but for ease of exposition, I assume the time series are obtained separately.
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5 Dynamical kinds and model validation

5.1 Growth models

To provide a concrete sense for how dynamical symmetries can contribute to model validation,
I present three case studies in this section. In each case, the target system involves biological
growth of a single species. More specifically, the models I’ll consider are aimed at predicting
population size – of mammals or microbes – as a function of time for a given environment.
Perhaps the most influential model of this sort was published in the early 19th century by P.F.
Verhulst (1838).10 In Verhulst’s “logistic model”, the instantaneous rate of population growth
is proportional to a quadratic function of the current population:

dx

dt
= rx

(
1− x

K

)
. (6)

The parameter r is generally interpreted as representing fecundity (or intrinsic growth rate)
and K is viewed as the carrying capacity (the maximum sustainable population). The solutions
of this equation are curves with a familiar sigmoid shape – they begin with a nearly exponential
phase, pass through an inflection point, and level off in an asymptote to the carrying capacity.
It is important to note that, although r and K can be given a biological interpretation, they
are in general not directly measurable, and must be estimated by fitting one of these sigmoidal
curves to the data.

Verhulst’s original model has spawned a menagerie of generalized, extended, or otherwise
modified logistic models. The bulk of these can be gathered under a single class of models that
Tsoularis and Wallace (2002) call “generalized logistic” functions.11 These have the form,

dx

dt
= rxα

(
1−

( x
K

)β)γ
, (7)

where the additional parameters α, β, and γ have no obvious biological interpretation. For
parameter values not too far from 1 (e.g., α = β = 1; γ = 2), the solutions of generalized
logistic models are only subtly different in shape from the original Verhulst model, at least
when one is free to choose values of r and K (see (Tsoularis and Wallace 2002) for a thorough
review). This fact – coupled with the fact that r and K cannot be independently measured
or estimated – leads to a profound underdetermination and a persistent problem for model
validation. Which model is the right model of population growth for a given species in a given
context? Lest the reader get the impression that this question is merely academic and this
example merely a “toy”, note that papers continue to be published in biological and industrial
process journals addressing this question (Buchanan, Whiting, and Damert 1997; Fujikawa,
Kai, and Morozumi 2004; Zwietering et al. 1990). Researchers actually want to know the answer
so that they can not only predict but control and optimize the growth of, e.g., microbial stock
species or virulent microbial contaminants. In the case studies that follow, I demonstrate how
methods of assessing the sameness of dynamical symmetries can aid in model selection in the
context of bacterial growth.

10For an English translation of the French, see (Vogels et al. 1975).
11Another equally old and venerable model is that of Gompertz (1825). This model also continues to be

deployed for growth modeling.
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5.2 Example: Deterministic generalized logistic models

In the first case, consider a simulated population whose actual growth is deterministic and
dictated by a generalized logistic equation with α = 1, β = 3/2, γ = 2. We can use this
simulated population to generate data for which we know the ground truth. In Figure 1 (a),
you can see two samples from this system – for two different starting populations – where
Gaussian noise of standard deviation 0.3 has been added in order to accurately reflect the
noise inherent in measurement.

Now imagine yourself as a researcher interested in learning the “right” model of population
growth. For one reason or another, you’ve decided to consider two models: the Verhulst logistic
equation (Equation 6) and a generalized logistic (Equation 7) for which α = 1, β = 2, γ = 1.
I’ll call the latter the β = 2 model. Of course, neither of those reflects the true dynamics,
but the scientist never gets to know this a priori (that would make inductive inference rather
trivial). The point here is to examine what can be learned by different inferential methods
in a realistic, relatively simple case where we happen to know the ground truth and can thus
assess the performance of each method.

While there are myriad ways to fit and validate models of either sort, we’ll follow a particu-
larly simple procedure that exhibits the core features of most common statistical methods. In
particular, we’ll work with parameterized analytic solutions to the above differential equations.
Specifically, Equation 6 has solutions of the form,

x(t) =
K

1 +
(
K
x0
− 1
)
e−rt

, (8)

while the β = 2 model has solutions of the form,

x(t) =
K(

1 +
(

(Kx0
)2 − 1

)
e−2rt

)1/2
. (9)

We’ll use one sample from our target system to fit parameters for each model. That is, we’ll
use one set of measurements to determine r and K using nonlinear least squares regression.
We’ll then use those fit parameter values to try and predict the data in the second set of
measurements.12 The sum of the squared errors (SSE) for the predictions made by each model
can be used as a simple measure of goodness fit.

The results of carrying out this procedure are shown graphically in Figure 1 (a). The best
fit of the Verhulst model (fit to the data of the lower curve) is depicted with a solid red line,
and the best fit of the β = 2 model is shown with a dashed green line. Visually, it’s clear
that both models can be used to fit the initial curve very well. The SSE for the fit Verhulst
logistic is 22.1, and 128 for the alternative model. The Verhulst has an advantage, but both
do a decent job of at least summarizing the data. However, when we use the parameters from
the first fit to predict the second data set, the β = 2 model clearly falls apart. The sum of
squared errors are 95.9 and 310 for the Verhulst and β = 2 models, respectively. Note that the
logistic is not merely better than the β = 2 model, but it does a compelling job of predicting
the data. On the basis of this information – exactly the sort of information standard methods

12Note that the initial value of the population, x0 is fit independently in each case. That’s because, while the
other parameters are presumed to be intrinsic features of the growing population, the initial population size is
variable and assumed to have different (unknown) values in each case.
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Figure 1: (a) Noisily sampled measurements for a simulated system governed by a generalized
logistic equation starting from x0 = 5 (black dots) and x0 = 15 (crosses). The best fit Verhulst
model is depicted with a solid red line and the best fit β = 2 model with a dashed green
line. (b) The empirical symmetry function computed from the two trajectories in (a) is shown
with black crosses. The theoretical dynamical symmetries implied by the Verhulst and β = 2
models are shown with solid red and dashed green lines, respectively.
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Figure 2: Schematic showing how samples from two time-series are restructured to obtain an
implicit model of the dynamical symmetry that maps one trajectory into the other. (Adapted
from Figure 1 in (Jantzen 2017).)

provide the scientist trying to infer a model of growth – you might reasonably be inclined
to conclude the Verhulst model is not just the best of the available options, but also a fairly
reliable representation of the structure of the growth dynamics.13

But this would be a mistake. We know that the Verhulst model is wrong in this case, and
that it will systematically lead us astray for growing populations not yet observed. Here is
where attending to dynamical symmetries can help. To extract information about one of the
dynamical symmetries (with respect to time) of a system from two trajectories of that system,
one can simply build a new curve by matching each value of the variable of interest (x, or
population size, in this case) in one trajectory with its contemporaneous value in the other.
This operation is shown schematically in Figure 2. The resulting empirical curve (x̃ = σ(x))
is shown by the black crosses in Figure 1(b).

To use this information about the dynamical symmetries of our unknown growth system,
we need to compare the symmetry function predicted by each of the models we have already
fit to the data. These predicted symmetries, computed numerically for the models in precisely
the same way as for the experimental data, are shown as solid red and dashed green lines in
Figure 1 (b). The comparison algorithm discussed above in Section 4 judges both theoretical
symmetries to be significantly different from the empirical symmetry, and thus rejects the
hypothesis that either of them accurately describes the structure of the target system. In
other words, neither the Verhulst model (using the best-fit parameter values), nor the β = 2
model (again, using the best-fit parameters) accurately represent the target system. We have
learned that they are both wrong.

But an even stronger result can be established. In general, one can consider the entire
space of dynamical symmetries implied by a model, and ask whether whether there exist any
parameter values that could account for the observed symmetry function, regardless of how

13This is the line of reasoning presented in (Zwietering et al. 1990), where the Gompertz model is favored.
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well the associated solutions describe individual trajectories. In this case, it is possible to
solve analytically for the set of all dynamical symmetries for each of the two classes.14 For the
Verhulst logistic model, the dynamical symmetries are given by

σp(x) = Kx/
(
(1− e−p)x+ e−pK

)
, (10)

where each real value of p corresponds to a distinct symmetry transformation. Using this
analytic form, it’s possible to search for a set of parameter values (including p) that best fit
the empirical symmetry directly. The optimal fit can then be compared, via the comparison
algorithm described above, with the empirical symmetry. Doing so in this case leads to a
rejection. In other words, we can with confidence reject the claim that any parameterization
of the Verhulst logistic model accurately represents the dynamics of the target system.

5.3 Example: Real populations

The procedure for checking the symmetries of a theoretical model against the empirical, mea-
sured symmetries of a dynamical system was demonstrated in the previous section for artificial
data – data for which we know the ground truth about the governing dynamics. I crafted
the artificial data to be as faithful to the messiness of real-world data as possible, but there
is always a concern that a method will break down when confronted with real data. So let’s
take a look at an example of actual biological (or microbiological) growth.15 Figure 3 shows
two segments of data from a growth experiment. The experiment was designed to answer a
question about the fitness of bacterial strains in a variety of environments. As such, it involved
many populations of three bacterial strains, each tested in 3 distinct environments. But for
our purposes, I have selected time-series measurements indicating the size of just one of these
populations of bacteria growing on a microtiter plate.

In the interests of full disclosure, this particular population was not selected at random
from the available datasets. Rather, I focused on this particular population because it was the
one with a growth curve most plausibly described by one of the models considered above. In
other words, it was chosen to maximize the difficulty of rejecting a logistic or β = 2 model.
Other curves were clearly poorly fit by such models, and one would not have been inclined to
try. It’s also important to note that though two curves are shown in Figure 3 (a), there was
really only a single measured time series. What I’ve done is to split the time series in half,
and translate the time-values of the second half so that it begins at t = 0. The validity of
such a procedure rests on the assumption that the dynamics is autonomous. When such an
assumption is warranted, it means that a dynamical symmetry can be directly estimated from
purely observational data, without any interventions.

With the pair of sampled time-series curves, we can proceed as before and use them to
estimate a symmetry of the growing population. Figure 3 (a) shows the best-fit models as
solid red and green lines for the Verhulst and β = 2 models, respectively. The fit models are
nearly indistinguishable in terms of their SSE values, and it’s clear from visual inspection that
neither provides an exact fit. In fact, given the obvious curvature in the residuals, both models

14It’s generally possible to determine and fit symmetries numerically, without an analytic, closed form solution.
But since one is available in this case, I use it to simplify the analysis.

15This data was obtained from Connelly (Data Set for ‘Analyzing Microbial Growth with R’ ) and is used
here with permission (and gratitude). The dataset can be found at https://zenodo.org/record/1171129. I am
specifically considering the sixteenth row of the table.
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Figure 3: (a) Measurements of population size for a real bacterial colony grogin on a microtiter
plate. The growth trajectory was divided in two to indicate how the population changes
starting from two different initial conditions. The best fits Verhulst model is depicted with a
solid red line and the best fit β = 2 model with a dashed green line for each measured curve.
(b) The empirical symmetry function computed from the two trajectories in (a) is shown with
black crosses. The theoretical dynamical symmetries implied by the Verhulst and β = 2 models
are shown with solid red and dashed green lines, respectively.
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would likely be rejected by methods that focus on single trajectory analysis. Nonetheless, the
β = 2 model provides a better relative fit, and might seem a reasonable approximation to
the data. However, the failure to represent the target system is quite pronounced when we
examine how well the symmetries of the theoretical models fit the symmetry estimated from
the data. The latter is shown in Figure 3 (b), along with the theoretical symmetries implied
by the best-fit logistic and β = 2 models. The decision procedure we’ve been considering
strongly rejects the hypothesis that either theoretical symmetry is equivalent to that in the
data. In other words, neither model accurately represents the causal structure of this growing
population.

5.4 Example: Stochastic logistic models

As discussed above, stochastic models present special problems for validation. To demonstrate
the efficacy of the symmetry comparison approach, I simulated a stochastic version of a gen-
eralized logistic equation. Specifically, I built a (simulated) target system governed by the
following stochastic differential equation (SDE),

dx

dt
= rx

(
1−

( x
K

)2
)

+ sxdWt, (11)

where Wt is a one-dimensional Wiener process, and s is a constant determining the amount of
multiplicative noise. Solutions to this equation were generated numerically using the discrete
equations derived in (Liu and Fan 2017) (based on the Milstein method mentioned in (Higham
2001)).

Figure 4 (a) shows data from times series measured for mulitple replicates of the target
system. There are 10 replicates of the system for initial condition x0 = 5, and 10 replicates
for the initial condition x̃0 = 15. That is, the target system was evolved through time for ten
iterations starting from each of two initial population sizes. Data from all iterations and initial
conditions are plotted together.

There are a variety of ways in which to fit a stochastic model to such data (assuming we
don’t know the ground truth of Equation 11). One might build a numerical simulation and
then attempt to optimize parameters with respect to one or another of the measures of fit like
those discussed above in Section 2.2. The generalized definition of dynamical symmetry (see
Definition 3 above), however, suggests that we focus on the expected value of the population
at a given time (for a given initial condition). Consider the two sets of replicates corresponding
to the two distinct initial conditions. If one averages the values measured at a given time for
each set, one obtains two curves indicating expected population as a function of time. The
function mapping one of these curves into the other is a dynamical symmetry. The result of
this procedure is shown by the black crosses in Figure 11 (b). For whatever our model is, we
can similarly compute a dynamical symmetry and compare the two as before. A significant
difference would allow us to reject the structural validity of our model. In this case, I have
chosen to try to model the system with a stochastic Verhulst equation:

dx

dt
= rx

(
1−

( x
K

))
+ sxdWt, (12)

For such a model, it is possible to find an analytic expression for the expected value of x as a
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Figure 4: (a) Measurements for a simulated system governed by a stochastic generalized lo-
gistic equation for which α = 1, β = 2, and γ = 1 (black crosses). The lower set of curves
starts from x0 = 5, and the upper from x0 = 15. (b) The empirical symmetry function com-
puted from the means of each of the two trajectories in (a) is shown with black crosses. The
theoretical dynamical symmetry implied by the Verhulst model is shown with a solid red line.
(c) Measurements for a simulated system governed by a stochastic Verhulst logistic equation
(black crosses). (d) The empirical symmetry function computed from the means of each of
the two trajectories in (c) is shown with black crosses. The theoretical dynamical symmetry
implied by the Verhulst model is shown with a solid red line.
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function of time. This is given by:

E[x(t)] =
k

1 + ((k/x0)− 1)e(−rt) , (13)

where x0 is the value of x at t = 0 (Skiadas 2010, Sec 4.4). This, as it happens, is exactly
the form of the solutions of the deterministic Verhulst equation. Dynamical symmetries of
the stochastic model are thus those of the deterministic model (see Equation 10). The red
solid lines in Figure 4 (b) show the result of performing a least squares fit for symmetries
of the Verhulst equation on the empirical data obtained from the target system. When the
comparison algorithm is applied to this pair of dynamical symmetries – the one estimated for
the target system and the best fit solution for our model – it rejects the model. In other
words, even in the stochastic case, comparison of dynamical symmetries can lead to definitive
rejection of a model.

Of course, this would be useless if the method also rejects the true model. In Figures 4
(c) and (d), results are shown for the same procedure carried out when the underlying system
really is governed by a stochastic Verhulst equation. In this case, the comparison algorithm
tentatively declares that the model and the target system share the same symmetry (and thus
the model may be structurally valid).

6 Conclusion

I have argued above for the need to recognize a sort of structural validity for models that is
broader and more forgiving than exact structural isomorphism of model and target (whatever
that might mean), but that is nonetheless sufficient for establishing the reliability of a model’s
predictions regarding outcomes under a manipulation of inputs or boundary conditions. In
other words, the sort of model reliability that is needed for the confident prediction and control
of a target system is looser than the strict notion of structural validity that can be found in
much of the scientific and engineering literature.

Furthermore, I’ve shown by way of a series of concrete examples how dynamical symmetries
can be used to test for this broader sense of structural validity. Roughly, one compares the
theoretical dynamical symmetries entailed by the model with estimates of real dynamical
symmetries exhibited by the target system. This method, with a suitably generalized definition
of dynamical symmetry, even applies to the case in which both the model and target system
are stochastic. The method has important limitations. For one, it assumes that there are no
latent variables driving the dynamics. Nonetheless, it represents a rigorous new tool in a field
that is increasingly in need of new tools as computational models grow ever more complex.

While these results are, I think, important in their own right, I wish to draw out some
implications of the mode of origination and practical success of these methods. In a sense, the
development of this method of model validation is an exercise in applied philosophy. The notion
of a dynamical symmetry derives from philosophical work on natural kinds (i.e., projectible
kinds) (Jantzen 2014). A specific tool for model validation was derived from a very general
answer to an epistemic puzzle fundamental to scientific inquiry: how do we recognize clusterings
of systems or phenomena that are good candidates for instantiating scientific laws? This is
obviously not the first philosophical project to contribute to scientific practice. But it is
a reminder that philosophers can be helpful partners in developing well-motivated tools for
empirical inquiry, not just sideline commentators.
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But the converse is also true; the development of the philosophical idea into an operative
tool has provided a variety of lessons that philosophers should heed. For example, the focus
on approaches to narrow-sense structural validity to the exclusion of methods that would
more effectively satisfy the aims of a modeler is largely a product of philosophical myopia,
not a quirk of those working with models. Prominent authors in the literature on model
validation frequently and explicitly take their cue from the philosophers. For instance, in
speaking of methods for establishing structural validity, Barlas (1996, p 186) frames the project
of structural validation this way:

Validation of a system dynamics model is much more complicated than that of
a black-box model, because judging the validity of the internal structure of a model
is very problematic, both philosophically and technically. It is philosophically diffi-
cult, because, as we shall briefly review in the next section, the problem is directly
related to the unresolved philosophical issue of verifying the truth of a (scientific)
statement.

Thus, it is a philosophical lesson of the applied work presented here that there exists
an important feature of models (and scientific theories) that sits between mere predictive
success and perfect representational fidelity. Specifically, models can more or less reliably
make judgments about what would be the case under intervention or manipulation without
using a mechanism exactly isomorphic to whatever drives the real-world target system. This
is an aspect of modeling that philosophers often ignore but shouldn’t given its demonstrable
utility in making sure models do what we need them to do. In other words, philosophers
interested in foundational epistemic problems would do well to listen closely to their colleagues
in applied math, data analysis, and statistics.
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