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Detecting causality between variables in a time series is a challenge, particularly when the rela-
tionship is nonlinear and the dataset is noisy. Here, we present a novel tool for detecting causality
that leverages the properties of symmetry transformations. The aim is to develop an algorithm with
the potential to detect both unidirectional and bidirectional coupling for nonlinear systems in the
presence of significant sampling noise. Most of the existing tools for detecting causality can make
determinations of directionality, but those determinations are relatively fragile in the presence of
noise. The novel algorithm developed in the present study is robust and very conservative in that
it reliably detects causal structure with a very low rate of error even in the presence of high sam-
pling noise. We demonstrate the performance of our algorithm and compare it with two popular
model-free methods, namely transfer entropy and convergent cross map. This first implementation
of the method of symmetry transformations is limited in that it applies only to first-order autonomous
systems. Published by AIP Publishing. https://doi.org/10.1063/1.5018101

Real world systems are composed of a number of inter-
acting units. Identifying causality refers to detecting how
these units are coupled and quantifying the strength of
that coupling from time series data. Detecting causal-
ity is particularly important in understanding real-world
systems, and hence has attracted researchers from differ-
ent disciplines to develop a number of causality detect-
ing tools. Here, we present a novel causality detecting
algorithm that utilizes the property of dynamical symme-
try. The application of the present version of the algorithm
is limited to first-order autonomous systems. The perfor-
mance of the algorithm is demonstrated with toy models
from ecology and a real-world electronic system and is
found to be very reliable in correctly identifying the cou-
pling between variables. In other words, it successfully
discovers the presence and direction of causal edges. We
further discuss the scope of improvement of the present
version of the algorithm that may find application in more
general scenarios.

I. INTRODUCTION

Detecting causality between observed time series refers
to the identification of dominant coupling direction and the
quantification of coupling strengths between the interacting
time series variables. Identifying such causal relationships
from observational or experimental data is also often referred
to as “causal discovery.”1 Identifying causality is of great
importance as it has applications in unraveling various real-
world phenomena, ranging from climate networks2 to brain
networks.3 The challenge of learning causal relations for such
a diversity of systems has attracted researchers from various
disciplines, and a variety of methods have been proposed. One
early method is Granger causality,4 which relies on the idea

a) Electronic mail: sdroy@vt.edu
b) Electronic mail: bjantzen@vt.edu

of separability. This refers to the removal of information of
the causative factors from the effects.5,6 Originally, the appli-
cation of Granger causality was limited because it assumed
linear dependence,3 whereas most real-world systems are non-
linear. But recently, Granger causality has been extended to
nonlinear systems.7 Another approach for detecting causality
in linear systems is by computing cross-correlation8,9 between
time series for a range of time lags, and identifying the max-
imum in correlation value at some non-zero lag. The leading
time series variable is then inferred to be the cause.

To infer causality in non-linear systems, model-free
methods (that do not assume a background model), such
as transfer entropy,10 convergent cross map,5 recurrence
plots,3,11 causation entropy,12 and phase dynamics13,14 are
becoming increasingly popular. A tool to detect the direc-
tion of coupling in interacting oscillators is developed in
Refs. 13 and 14 and works by observing an asymmetric fail-
ure of invariance in the time evolution of oscillator phases.
Roughly, if oscillator 1 drives oscillator 2, then the change
in phase of oscillator 2 over a fixed interval of time will
depend upon the phase of oscillator 1 at the outset, but not
vice versa. On the other hand, transfer entropy (TE) is based
on an information-theoretic concept and employs the idea
that causes predict their effects. In particular, it quantifies the
information flow between time series variables and identi-
fies the direction of causation via the dominant direction of
information flow. Transfer entropy has already found appli-
cations in neuroscience,15 finance,16 social media,17 animal
behavior,8,18,19 and public policy.20 The main limitation of TE
is that the method requires long time series which may not be
available in practical situations.

A relatively recent but popular method is the convergent
cross map (CCM),5 which is based on a state space reconstruc-
tion technique. CCM introduces a new criterion for detecting
causality. In this case, the effects cross-estimate the causes
contrary to the Granger and TE sense.21 In Ref. 5, CCM
is identified as a superior method to both TE and Granger
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causality in correctly detecting causality.5 CCM has already
found application in diverse settings.5,22–25 The major lim-
itation of CCM is that it can only detect low to moderate
coupling and fails in the presence of strong coupling and for
noisy data.26

Despite their broad applicability, TE and CCM continue
to struggle with noisy data or small datasets. We present a first
version of an algorithm that, though of limited range of appli-
cation, is robust for small, noisy datasets. This method detects
the direction(s) of causal influence by utilizing the concept of
dynamical symmetries.27

The paper is organized as follows. In Sec. II, we describe
dynamical symmetries, and how properties of these symme-
tries can be exploited in detecting causality. In Sec. III, we
present the algorithm. In Sec. IV, we explain TE and CCM.
In Sec. V, we introduce Lotka-Volterra models as toy target
systems and demonstrate the performance of our algorithm in
detecting unidirectional and bidirectional causality. We fur-
ther compare the performance of our algorithm with that of
TE and CCM on real world systems. Finally, we present the
limitations of our algorithm and the scope of improvement in
Sec. VI.

II. METHOD

The concept of dynamical symmetry was first introduced
in Ref. 28 and has proved to be a powerful tool for classify-
ing dynamical systems according to higher-order properties of
their causal structure.27 For purposes of time series analysis,
we use the following definition of the concept:

Dynamical symmetry: Let V be the set of states of
a system of n variables, and let �t1,t0 be the state evolu-
tion operator that takes the system from some state v0 ∈ V
at time t0 to the corresponding evolved state v1 ∈ V at t1.
The transformation σ : V → V is a dynamical symmetry with
respect to time if and only if it has the following property:
∀v∈V∀t0∀t1>t0 [�t1,t0(σ (v)) = σ(�t1,t0(v))]. In other words, the
set of dynamical symmetries is the set of transformations of
the system that commute with its time evolution.

For deterministic dynamics described by a system of
differential equations, dynamical symmetries correspond to
automorphisms on the space of solutions, which in the case
of dynamical systems are trajectories. Consider two arbitrary
trajectories such that at t0, the system is in state s1,t0 on tra-
jectory 1 and state s2,t0 on trajectory 2. Then the map that
pairs states s1,t0+δ with s2,t0+δ for any δ ≥ 0 is equivalent to
a dynamical symmetry. To see this, consider any paired states
s1,t0+δ and s2,t0+δ . If one evolves the state s1,t0 for time δ and
then applies the map, one obtains s2,t0+δ , exactly as if one had
applied the map at t0 and then evolved through an interval of
δ. The map in question is also a function (generally a vector
function) since, under the assumption that the system is deter-
ministic, no trajectory can repeat a state (i.e., no trajectories
intersect with themselves or others).

The set of dynamical symmetries of a system is deter-
mined by its causal structure. Furthermore, dynamical sym-
metries can be directly estimated from data without first
learning a dynamical model.27 For these reasons, dynamical
symmetry can be used to probe causal structure.

In the present study, we exploit the nature of dynamical
symmetries to identify the causal influences in a system com-
posed of two time-dependent variables that may be coupled in
either or both directions. To illustrate our procedure, consider
a unidirectionally coupled, autonomous, first-order system of
the form:

ẋ = h1(x, ẏ, y), (1a)

ẏ = h2(y). (1b)

Note that the dynamics of x is dependent upon the evolution
of y, but not vice versa. This sort of coupling is what we have
in mind when speaking of causal influence in such a system.
In this case, the coupling is “unidirectional” from y to x.

A common representational tool in causal discovery is
the structural equation model (SEM)29 (Chaps. 1 and 5). If
a system such as Eq. 1 has solutions for the given h1 and h2,
then we can equivalently represent it with a structural equation
model.27 This is because one can express a flow of the dynam-
ical system as a function of time and the present and past
values of the dynamical variables. In this case, we have

t := t, (2a)

x := f (t, y; x0), (2b)

y := g(t; y0). (2c)

In the SEM, f (t, y) and g(t) capture the dynamics of the sys-
tem, while x0 and y0 are initial conditions for the variables
x and y, respectively. Note that g is strictly a function of
time, but x depends on y, again reflecting the asymmetry of
influence.

Our method depends upon examining the dynamical sym-
metries of a system. More specifically, we look at differences
in their one-variable projections. Given any two trajectories of
a deterministic system of two dynamical variables (x and y),
there is (at least one) dynamical symmetry that maps one into
the other. In general, these symmetries can be represented by
two-component vector functions of system states. Each com-
ponent of such a vector function can be viewed as a surface
whose distance above or below a point in the x, y phase plane
is the value to which that component of the dynamical sym-
metry maps the point. Sequences of points in the phase plane
are thus mapped by a dynamical symmetry to curves on this
surface. Our method relies in effect on detecting differences in
the shape of these surfaces along different basis directions. We
do so by looking at the projection of curves on these surfaces
onto the plane corresponding to one or the other dynamical
variable. For example, the x-component of the vector function
representing a symmetry may be written σx(x, y). Consider a
curve in the phase plane given by 〈r(t), s(t)〉. This is mapped
by a dynamical symmetry to σx(r(t), s(t)) = 〈u(t), v(t)〉, a
curve on the surface dictated by σx(x, y). If we project this
curve onto the plane containing the x-axis, we obtain a new
curve, denoted σ(x). In this case, when parameterized by time,
this curve is given by σ(x(t)) = u(t). In some cases, the pro-
jected curve σ(x) is in fact a proper function of x and thus
represents a dynamical symmetry of the system that involves
intervention on only the variable x. However, it is often the
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TABLE I. Symmetry transformation for x: σ(x).

��,0(σ (x))

t x y
0 x0 y0

0 σ(x0) y0

� f (�, g(�; y0); σ(x0)) g(�; y0)

σ(��,0(x))

t x y
0 x0 y0

� f (�, g(�; y0); x0) g(�; y0)

� σ(f (�, g(�; y0); x0)) g(�; y0)

TABLE II. Symmetry transformation for y: σ(y).

��,0(σ (y))

t x y
0 x0 y0

0 f (0, σ(y0); x0) σ (y0)

� f (�, g(�; y0); x0) g(�; σ(y0))

σ(��,0(y))
t x y
0 x0 y0

� f (�, g(�; y0); x0) g(�; y0)

� f (�, σ(g(�; y0)); x0) σ (g(�; y0))

case that σ(x) is not a function. For this reason, we call these
projections pseudo-symmetries.

To derive implicit equations for the pseudo-symmetries
involving only x [denoted σ(x)] and those involving only
y [denoted σ(y)] given the above assumptions, consider the
series of operations summarized in Tables I and II, respec-
tively. To find σ(x) we start from t = 0 then apply the trans-
formation on x followed by time evolution. Each row of the
center column of the table indicates the state of the system
after each of these operations as dictated by Eq. (2). Next, we
start from t = 0, but change the order of time evolution and
the transformation on x. The resulting system states are shown
in the right-hand column. This procedure yields a condition
that must be satisfied for any transformation, σ(x), to qualify
as a pseudo-symmetry. From the final row of Table I, we can
see that any transformation of x that is a pseudo-symmetry
must satisfy

f (�, g(�; y0); σ(x0)) = σ(f (�, g(�; y0); x0)). (3)

Importantly, this condition entails that any symmetry σ(x) is
dependent upon both initial conditions, x0 and y0. That is, the
set of pseudo-symmetries of x are determined in part by the
initial value of y.

We perform a similar exercise to obtain the condition that
σ(y) must satisfy. From Table II, it is clear that the pseudo-
symmetries involving y alone must satisfy

g(�; σ(y0)) = σ(g(�; y0)), (4)

which is independent of the initial condition for x. The reason
σ(y) is independent of x0 is because the evolution of y as given
in Eq. (2) is not influenced by x. A similar argument to the
above shows that if the causal influence is bidirectional—if
x influences y and vice versa—then σ(x) would depend upon

TABLE III. Notation for trajectories.

Initial conditions Notation for x Notation for y

[γ , α] −→xα

−→̃
yγ

[γ , β] −→xβ
−→yγ

[δ, α]
−→̃
xα

−→̃
yδ

[δ, β]
−→̃
xβ

−→yδ

the initial value of y and σ(y) would depend upon the initial
value of x.

The central idea of the present study is to exploit this
pattern of dependence on initial conditions to infer the direc-
tion(s) of causal influence. By estimating σ(y) for two dif-
ferent initial conditions of x, one can ascertain whether σ(y)
depends upon x0. If it does, then x is a cause of y. Con-
versely, if σ(x) is found to depend upon y, then y is a cause
of x, as in the example above. And if both one-variable
pseudo-symmetries depend upon the initial values of the other
variable, then the causal influence is mutual (i.e., x and y influ-
ence each other). Note, however, that this decision procedure
does not indicate the degree to which one influences the other.

This approach depends upon comparing pairs of pseudo-
symmetries, σ(x) and σ(y), for the dynamical system of
interest. In practice, the information to do so can be gleaned
from a single time series of sufficient length, but we assume
here that multiple replicates of a dynamical system are used,
as depicted in Fig. 1. In the first (System 1), we start by choos-
ing two initial conditions for x (x0 = γ and x0 = δ) while
keeping the initial condition for y fixed at α. System 2 is
set up similarly, except that y0 is fixed at β. The pseudo-
symmetries of interest are the functions

−→̃
xα (−→xα ) and

−→̃
xβ (−→xβ )

that, respectively, map values of x in the time series −→x to the
corresponding (same time) value in the time series vector,

−→̃
x

(the subscripts α and β refer to the initial value of y for each
system). These two functions are denoted σ1(x) and σ2(x) in
Fig. 1(a). Similarly, we set up two additional systems, System
3 and System 4, to produce two time series for the variable y,
each starting from a different initial condition, while the ini-
tial value of x is set to either δ (for System 3) or γ (for System
4). The relevant pseudo-symmetries of y in this case are the
functions denoted σ3(y) and σ4(y) in Fig. 1(b). The subscripts
δ and γ refer to initial value of x in Systems 3 and 4, respec-
tively. Table III presents a complete notation for the respective
trajectories.

III. THE ALGORITHM

The algorithm is based on a technique that was first intro-
duced in Ref. 27, where the dynamical symmetries of two
systems are compared to determine whether the systems share
a similar dynamics. In case they do not share the same symme-
try transformations, they are confidently determined to belong
to “different kinds”; otherwise, they are provisionally taken to
belong to the “same kind.” In the present study, a similar pro-
cedure is adopted to compare pairs of pseudo-symmetries and
use the pattern of results to detect causal influences. To detect
causality in this way, we proceed in four steps: (i) sampling,
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(a) (b)

FIG. 1. The schematic shows how dynamical symmetries can be used to identify causal direction. In this example, the variable y is driving x. Each pane depicts
a pair of trajectories for four different replicates of a dynamical system. In Systems 1 and 2, initial conditions for y are fixed, and functions σ1 and σ2 are the

functions that map the time series vector −→xα to
−→̃
xα and the time series vector −→xβ to

−→̃
xβ , respectively. Similarly, for Systems 3 and 4, σ3 and σ4 are the functions

connecting trajectories of y for which the initial values of x are set to x0 = δ and x0 = γ , respectively. The functions σ1 and σ2 depend on the initial values of y,
and hence σ1 �= σ2. However, since the variable y is independent of x, σ3 = σ4.

(ii) data transformation, (iii) comparison (of σ1 with σ2, and
σ3 with σ4), and (iv) decision.

In step (i), we sample from four systems, where the gov-
erning equations and the parameters remain the same, but the
initial conditions vary as depicted in Fig. 1. For System 1,
two time series are measured using the same initial condition
for the y variable (y0 = α), different initial conditions for x,
namely x0 = δ and x0 = γ . Similarly, for System 2, we set
y0 = β, and choose two initial conditions for x, x0 = δ, and
x0 = γ . The trajectories are obtained by measuring the val-
ues of the variables at times t0, . . . , tm for each of the systems.
Similarly, time series are acquired from System 3 and Sys-
tem 4. In this case, the initial value of x is held constant,
and measurements are made on each system for two differ-
ent initial values of y. In all cases, measurements are made
at the same set of times, t0, t1, . . . , tm. We choose segments
such that x and y vary monotonically. This guarantees that
the pseudo-symmetries are functions over at least this inter-
val, which allows us to use the comparative tools described
below.

In step (ii), we combine pairs of time series acquired
in step (i) to generate a sample of each of the functions σi.
Specifically, for System 1 we pair the vector of x-values, −→xα

for the time series beginning with x0 = γ with the vector of
x-values

−→̃
xα from the time series beginning with x0 = δ. The

result is a two-column matrix (represented in Algorithm 1 as
input Aσ1,x) for which the i-th row contains elements from each
of the two time series at the time ti. The function mapping the
values in the first column to those of the second [represented
by
−→̃
xα (−→xα )] is the pseudo-symmetry σ1(x). We similarly pair

the time series vectors of x or y variables for Systems 2–4.
In step (iii), we determine whether σ1 = σ2 and whether

σ3 = σ4. To detect whether the pseudo-symmetries differ
between Systems 1 and 2, we estimate the error of two com-
peting models, sep and joint, using 10-fold cross-validation.
In the sep model, data from System 1 and System 2 are treated
separately, whereas for the joint model, the data from System
1 and System 2 are combined and treated as a single sample
from the same function. In either case, we fitted polynomial

functions to estimate the pseudo-symmetries. For a given
dataset, the order of the polynomial functions to be fit is deter-
mined by an additional 10-fold cross-validation (represented
by FitPolynomial in Algorithm 1), as was done in Ref. 27.
This function starts by considering a polynomial of order 1
and computes the mean-squared error of fitting a first-order
polynomial over 10 folds of the data. The function continues
fitting the data with higher order polynomials and compares
the mean-squared error with that of the preceding order. If the
error increases, the function terminates and returns the order
that minimized the mean square error. The polynomial coeffi-
cients are then evaluated by fitting the entire data set with the
order as returned by FitPolynomial in Algorithm 1.

It is important to note that mean squared errors computed
for the sep and joint models cannot be directly compared,
because the error depends on how the data are partitioned
and on the amount of observation noise present in the system.
Following the procedure in Ref. 27, we quantify this back-
ground contribution to the mean squared errors of sep and
joint models by dividing each of the systems into two subsys-
tems, and using the same 10-fold cross-validation routine on
each pair to identify the difference of the mean squared errors
between sep and joint models that one should expect purely
by chance. For example, System 1 is divided into two sub-
systems and mean squared errors are computed for joint and
separate models fitted to these subsystems; the absolute differ-
ence in these errors is represented by μ1. Similarly, μ2 refers
to the absolute difference in mean squared errors between
sep and joint models built from System 2. In Algorithm 1,
threshold(Aσ1,x, Bσ2,x) = max(μ1, μ2). The hypothesis that σ1

and σ2 have the same functional form is rejected if the condi-
tion MSEjoint > MSEsep+ threshold(Aσ1,x, Bσ2,x) holds, and
hence we infer σ1 �= σ2. The same calculations are done with
the data from Systems 3 and 4 to decide whether σ3 = σ4.

In the final step (iv), we reach a decision regarding causal
influence. Specifically, if we detect σ1 = σ2 and σ3 �= σ4, we
identify x as the cause of y. Conversely, if we detect σ1 �= σ2

and σ3 = σ4, we identify y as the cause of x. If both pairs
are unequal, this suggests mutual causal influence, and if both
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Algorithm 1. Comparison of σ1 with σ2 and comparison of σ3 with σ4

Input: Aσ1,x—for System 1, an m× 2 matrix where each row contains one element of −→xα and the corresponding element of
−→̃
xα to which σ1 maps the system state.

Aσ3,y—for System 3, an m× 2 matrix where each row contains one element of −→yδ and the corresponding element of
−→̃
yδ to which σ3 maps the system state.

Bσ2,x—for System 2, an m× 2 matrix where each row contains one element of −→xβ and the corresponding element of
−→̃
xβ to which σ2 maps the system state.

Bσ4,y—for System 4, an m× 2 matrix where each row contains one element of −→yγ and the corresponding element of
−→̃
yγ to which σ4 maps the system state.

Output: Comp1—a boolean value indicating whether σ1 and σ2 are identical.
Comp2—a boolean value indicating whether σ3 and σ4 are identical.

1: randomize the rows of Aσ1,x, Aσ3,y, Bσ2,x, Bσ4,y

2: Partition1 ← divide the rows of Aσ1,x into 10 segments
3: Partition2 ← divide the rows of Bσ2,x into 10 segments
4: Partition3 ← divide the rows of Aσ3,y into 10 segments
5: Partition4 ← divide the rows of Bσ4,y into 10 segments
6: for i = 1 to 10 do
7: for k = 1 to 4 do
8: Traink ←⋃

p
{Partitionk[p]|p �= i}

9: end for
10: for j = 1 to 2 do
11: Model2j−1 ← FitPolynomial(Train2j−1)

12: Model2j ← FitPolynomial(Train2j)

13: Model2j−1,2j ← FitPolynomial(Train2j−1 ∪ Train2j)

14: SE2j−1 ← concatenate(SE2j−1, squared errors of Model2j−1 with respect to Partition2j−1[i])
15: SE2j ← concatenate(SE2j, squared errors of Model2j with respect to Partition2j[i])
16: SE2j−1,2j ← concatenate(SE2j−1,2j, squared errors of Model2j−1,2j with respect to Partition2j−1[i] ∪ Partition2j[i])
17: end for
18: end for
19: MSEsep1 ← mean(SE1 ∪ SE2)

20: MSEjoint1 ← mean(SE1,2)

21: MSEsep2 ← mean(SE3 ∪ SE4)

22: MSEjoint2 ← mean(SE3,4)

23: if MSEjoint1 > MSEsep1 + threshold(Aσ1,x, Bσ2,x) then
24: return TRUE and Comp1 = 1
25: else
26: return FALSE and Comp1 = 0
27: end if
28: if MSEjoint2 > MSEsep2 + threshold(Aσ3,y, Bσ4,y) then
29: return TRUE and Comp2 = 1
30: else
31: return FALSE and Comp2 = 0
end if

pairs are identical, then x does not appear to influence y or
vice versa.

Note that the algorithm relies on randomizing the rows of
Aσ1,x, . . . , Bσ4,y, and hence the decision may vary on different
runs using the same data. Thus, for a given time series, we
need to run Algorithms 1 and 2 multiple times, and select the
majority decision.

IV. OTHER CAUSALITY DETECTING TOOLS:
TRANSFER ENTROPY (TE) AND CONVERGENT
CROSS MAP (CCM)

In our present study, we choose two model-free meth-
ods, namely TE and CCM, to provide a benchmark for the
performance of our algorithm in detecting causality. In draw-
ing comparisons, it is important to note that the method
introduced here requires four replicate time series data each
starting from four different pairs of initial conditions, whereas

both TE and CCM require a single time series data, without
any prerequisite on the number of initial conditions needed.

A. Transfer entropy

The idea of TE was first formalized in Ref. 10 to mea-
sure information flow between two time series variables.
TE uses the concept of Shannon entropy. Shannon entropy
quantifies the expected value of the information associ-
ated with the occurrence of an event and is defined as
follows:

H(X ) = −
∑
x∈X

Pr[x] log2 Pr[x], (5)

where Pr[x] is the probability mass function for a time series
variable X taking the value x and X refers to the set contain-
ing all possible realizations of X . Now, given two time series
variables X and Y , the TE from Y to X (TY→X ), quantifies
information transfer from Y to X by measuring the reduc-
tion in entropy of X when conditioned on Y . Hence, transfer
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Algorithm 2. Decision

Input: Comp1 and Comp2 from Algorithm 1.
Output: Value 1 if x→ y, value 2 if y→ x, value 3 if y↔ x and value 0 indicating no causal relationship detected.
1: if Comp1 = 1 and Comp2 = 0 then
2: return 2
3: else if Comp1 = 0 and Comp2 = 1 then
4: return 1
5: else if Comp1 = 1 and Comp2 = 1 then
6: return 3
7: else
8: return 0
9: end if

entropy from Y to X is defined as

TY→X =
∑

x(t+1)∈X(t+1),
x(t)∈X(t),
y(t)∈Y(t)

Pr[x(t + 1), x(t), y(t)]

× log
Pr[x(t + 1)|x(t), y(t)]

Pr[x(t + 1)|x(t)] ,

where Pr[x(t + 1)|x(t)] and Pr[x(t + 1)|x(t), y(t)] denote the
probability of x(t + 1) conditioned on x(t) alone, and on both
x(t) and y(t), respectively; Pr[x(t + 1), x(t), y(t)] denotes joint
probability. If Y does not provide any additional informa-
tion then Pr[x(t + 1)|x(t), y(t)] = Pr[x(t + 1)|x(t)], and hence
TY→X equals zero. In general, transfer entropy is an asym-
metric quantity, and comparing TY→X with TX→Y detects the
dominant direction of information flow, thus identifying the
direction of causation.

We implement TE using the open-source JIDT (Java
Information Dynamics Toolkit),30 which implements vari-
ous information-theoretic measures. We used the Kraskov,
Stogbauer, and Grassberger (KSG) method to calculate the
probability mass functions (PMF) used in the above defini-
tions because it uses dynamically altered kernel width in terms
of K nearest-neighbors (knn) and it has been shown to decrease
errors in PMF estimation.31

B. Convergent cross map

CCM, first introduced in Ref. 5, is a technique for deter-
mining causality between sets of time series using a neigh-
borhood method. It relies on the idea that if time series
X (t) causally influences Y(t), then signatures (or imprints)
of X (t) inherently exist in Y(t), and hence historical records
of Y(t) can be used to estimate the current state of X (t). The
estimated state of X (t) is denoted by ˆX (t)|MY , where MY

refers to a shadow version of the original manifold M recon-
structed from the projection of times series Y(t). Finally, the
accuracy of that estimation is evaluated using the correla-
tion coefficient, calculated between the original time series
and their cross-map estimates. If the correlation coefficient
between the true values (X (t)) and the estimated values
( ˆX (t)|MY ) is high, then it is concluded that there is “enough”
information stored in Y that came from X to indicate that X
is among the causes of Y . However, if Y(t) does not influence
X (t), then estimate of Y(t) using X (t), denoted by ˆY(t)|MX ,

will be inferior. A more detailed description of the algorithm
can be found in Ref. 32, and in the supplementary materials
of Ref. 5.

The CCM estimates are unitless and the values range
between 0 and 1. The cross map estimation is evaluated at
different library sizes, which refers to the length of the time
series used. The cross map estimation converges to a con-
stant value with increasing library size, and the comparison of
relative skill of cross-map estimations indicates the direction
of causation. As the real-world datasets possess observational
and process noise and may lack sufficient data, the asymptotic
value of cross map estimation may not converge to a value
of one.5 The parameters associated with CCM are lag, which
is used for the construction of the shadow manifold, and the
optimal embedding dimension. In the present study, we imple-
ment CCM using the rEDM package33 in R, where the lag was
set to 1 by default, and the optimal embedding dimension was
evaluated following the Simplex Projection method.34

In real-world applications of TE, the determination of
causal direction can be supported by a variety of statistical
significance tests.21,35 However, for CCM no statistical test
has been developed yet.21

V. RESULTS

A. Detecting unidirectional coupling in competitive
Lotka-Volterra model

To evaluate the performance of our algorithm, we
chose to implement a two-species competitive Lotka-Volterra
model. Nonlinear models of this type are used to describe the
population dynamics of two species competing for resources.
The governing equations are given as follows:

ẋ = r1x (1− (x+ α12y)/K1) ,

ẏ = r2y (1− (y+ α21x)/K2) ,
(6)

where x and y denote the population sizes, r1 and r2 the growth
rates, and K1 and K2 the carrying capacities of species 1 and
species 2, respectively. The parameter α12 represents the influ-
ence of species 2 on species 1, and similarly, α21 represents the
influence of species 1 on species 2.

For the first set of tests, we set r1 = r2 = 12, K1 =
K2 = 150, choose α21 = 0, and vary α12 from 1 to 8. By
setting α21 = 0, we ensure that x has no influence on y,
while increasing values of α12 correspond to an increasing
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strength of influence from y to x. Next, we implement our
algorithm on the time series data generated by solving Eq.
(6) using ode45 in Matlab. To implement our algorithm, we
need four pairs of initial conditions for x and y, which we
choose as follows: [x0 = γ = 20, y0 = α = 30], [x0 = δ =
40, y0 = α = 30], [x0 = γ = 20, y0 = β = 60], and [x0 =
δ = 40, y0 = β = 60]. We generate time series data of length
1000. We further add Gaussian observation noise with 0 mean
and varying standard deviation from 5 to 10.

We choose different coupling strengths and standard
deviations of observation noise to verify the robustness of our
algorithm in correctly detecting y as the cause of x. Figure 2(a)
demonstrates the results, where we vary the coupling strength
(α12) from 1 to 8, and for each choice of α12, we choose six
different amounts of observation noise ranging from standard
deviation 5 to 10. Since our algorithm relies on shuffling the
data while evaluating σ , the results obtained in the decision
phase are not deterministic. Hence, we run the algorithm ten
times on the same data and count the number of times x is
incorrectly detected as the cause of y, the number of times
y is correctly detected as the cause of x, and the number of
times the algorithm indicates bidirectional causality. We plot
the result as percentage in Fig. 2(a). Though some runs on a
given data set incorrectly indicate bidirectional causation, we
note that the majority decision is accurate for every combina-
tion of parameter values tested. Furthermore, in no case does
it miss the influence of y on x.

Next, to provide a benchmark for this performance we
implement TE and CCM. Since TE and CCM do not require
four different choices of initial conditions, we reuse the
data set generated above with initial conditions [x0 = γ =
20, y0 = α = 30]. We evaluate TE for knn values ranging from
2 to 15, where knn is the parameter used in estimating the
PMF. However, the resolution width used in estimating TE
should not be too large nor too small,31 so we fix knn to
4. We find in Fig. 2(b) that many times TE falsely identi-
fies x as the sole cause, particularly as the coupling strength
α12 and measured noise increase. Next, we implement CCM
which is presented in Fig. 2(c). CCM relies on the asymptotic
value of convergence at maximum library size, and Fig. 2(c)
presents the causal direction as identified by CCM. The results
demonstrate that CCM also performs poorly, as it too falsely
identifies x as a cause of y for a number of values of α12 and
noise.

1. Bidirectional causality with equal coupling strength

So far, we only considered the presence of unidirectional
coupling. Next, we investigate bidirectional coupling, begin-
ning with the special case where the coupling strength for
either direction is the same. Again we modeled a competi-
tive Lotka-Volterra system and kept all parameter values the
same, but set α12 = α21. We vary the coupling strength from
values of 1 to 8, and for each choice of coupling strength we
vary the standard deviation for the Gaussian noise from 5 to
10. Next, we implement our algorithm on the time series data
generated by solving Eq. (6) using ode45 in Matlab. We keep
the choice of initial conditions fixed as in the earlier example.

TABLE IV. The number of times out of ten runs the algorithm detects x and
y as causal drivers. The result is tabulated below in percentage.

α12 1 2 3 4 5 6 7 8 9 10
σ1 �= σ2(y→ x) 0 100 100 100 100 100 100 100 100 100
σ3 �= σ4(x→ y) 100 100 100 100 100 100 100 100 100 100

Further, we compare the results of our algorithm with that of
TE and CCM.

The performance of all three algorithms is presented in
Fig. 3(a), where we observe that our algorithm can reliably
detect the bidirectional coupling for all choices of coupling
strength and increased measured noise. In this case, the output
of all 10 runs was uniform for every combination of param-
eter values. The performance of TE and CCM in detecting
the bidirectional coupling is presented in Figs. 3(b) and 3(c),
respectively. This case is clearly more challenging for TE and
CCM. At least in a minority of cases, TE correctly identifies
bidirectional causation, but CCM never does. Note, however,
that these methods output continuous measures—of informa-
tion exchange in the case of TE and degree of correlation for
CCM—for which there is no universal decision threshold. It
is likely that adjustment of these thresholds would improve
performance, but any such threshold would have to be justi-
fiable in the absence of information about the system or the
nature of the sampling noise. It is an advantage of the method
presented here that a natural threshold is built into the binary
decision process that requires no foreknowledge of the system
to determine.

For reference, we have provided sample trajectories for
both unidirectional and bidirectional case in Fig. 4.

2. Bidirectional causality with unequal coupling
strength

Finally, we investigate the general case of bidirectional
causality, when both the variables influence each other but
do not necessarily do so with equal coupling strength. We
again choose the competitive Lotka-Volterra equations and
fix the coupling strength from x to y by setting α21 = 10,
and the standard deviation for the Gaussian noise to 5. Next,
we vary the coupling strength from y to x from values 1 to
10, where small values of α12 correspond to weak coupling.
To measure the performance, we run our algorithm 10 times
for each choice of α12 (again, on the identical data set) and
count the number of times x and y are identified as a causal
driver, independently. Bidirectional coupling will be inferred
if the algorithm detects both x and y as causal drivers. We
present the result as percentage in Table IV. We notice that
the algorithm detects the presence of bidirectional coupling
for all choices of α12, except when α12 = 1. In other words,
when the value of α12 is relatively small in comparison to α21

the algorithm correctly infers x as a cause of y, but misses the
relatively weak influence of y on x.

B. Accuracy

So far, we have found that the proposed algorithm per-
forms better for a single noisy dataset in comparison to both
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(a) (b) (c)

FIG. 2. (a) Results demonstrating performance of our algorithm in detecting unidirectional causality. We set α21 = 0, and varied the coupling from y to x, by
varying α12 from 1 to 8. For each value of α12, the six bars correspond to increasing Gaussian measurement noise with mean 0 and standard deviation ranging
from 5 to 10 in increments of 1. For each choice of α12, and each choice of standard deviation we run our algorithm ten times on single sample and count the
number of times y is correctly detected as the sole cause (colored in yellow), the number of times x is falsely detected as the sole cause (colored in green),
the number of times algorithm does not detect a causal relation (colored in light blue), and the number of times the algorithm detects bidirectional causation
(colored in deep blue). The results are plotted as percentage. Interestingly, the algorithm never misses the influence of y on x, but at times additionally detects
influence of x on y inferring bidirectional coupling. (b) Results demonstrating the performance of TE in detecting y as the cause of x. (c) Results demonstrating
the performance of CCM in detecting y as the cause of x. Results show that at times both TE and CCM fail to identify y as the sole cause.

TE and CCM. As noted above, the algorithm is indeterministic
for a given dataset; the output may depend upon the shuffling
that takes place in cross-validation. As suggested above, this
can be mitigated when using the algorithm to decide causal
structure by running multiple times on a given dataset and
then taking a consensus of the results. For characterizing the
accuracy of such a procedure, we accept the majority output
as definitive and test against a sample of datasets drawn from
the same Lotka-Volterra system. We repeat these tests for a
range of systems and sampling noises. Specifically, we vary
the standard deviation of the Gaussian sampling noise from 5
to 50. For a fixed value of noise, we vary the coupling strength
α12 from 1 to 8. We set α21 to zero for the unidirectional case
and vary both α12 and α21 for the bidirectional case, where α21

is set equal to α12. For each set of system and noise parame-
ters, we conduct ten trials, generating a distinct time series for
each. Within each trial, we run our algorithm ten times and
identify the causal direction by majority vote. We define the
accuracy as the ratio of the number of times the algorithm
correctly identifies all and only the correct causal edges to the
total number of trials, which is equal to ten. We present the

accuracy results in Fig. 5. We find that the accuracy decays
with an increase in the noise, however, the effect of noise
on performance reduces when the coupling strength is also
increased. In other words, for relatively weak coupling the
noise dominates the performance, but the performance gets
better if coupling strength is increased proportionally. This
pattern is prominent in the bidirectional case [Fig. 5(b)] and
weakly present in the unidirectional case Fig. 5(a).

C. Detecting bidirectional coupling in a Dixon system

In this section, we evaluate the performance of our
algorithm by implementing it on a system that demonstrates
chaos-like behavior. According to the Poincaré-Bendixson
theorem, the attractor for any smooth two-dimensional
bounded continuous-time autonomous system is either a
stable equilibrium or a limit cycle.36 Since our algorithm
is limited to first-order two-dimensional continuous-time
autonomous systems, we cannot apply it to most of the
well-known chaotic systems. However, there exists a system
derived by Dixon et al. which does not satisfy the smoothness

(a) (b) (c)

FIG. 3. (a) Results demonstrating the performance of our algorithm in detecting bidirectional causality. We varied α12 from 1 to 8, and set α21 = α12. For each
value of α12, the six bars correspond to increasing Gaussian measurement noise with mean 0 and standard deviation ranging from 5 to 10 in increments of 1. For
each choice of coupling strength, and each choice of standard deviation, we run our algorithm ten times on the same sample and count the number of times y is
detected as the sole cause (colored in yellow), the number of times x is detected as the sole cause (colored in green), the number of times algorithm does not detect
a causal relation (colored in light blue), and the number of times bidirectional coupling is detected (colored in deep blue). The results are plotted as percentage.
The algorithm uniformly detects bidirectional causality for the entire range of coupling strength and noise. (b) Results demonstrating the performance of TE in
detecting bidirectional causality. (c) Results demonstrating the performance of CCM in detecting bidirectional causality. Results show that TE misses one or the
other direction of causal influence, while CCM never detects bidirectional causality.
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(a) (b)

FIG. 4. Sample trajectories of the Lotka-Volterra model used in the analysis. (a) Unidirectional case, with α12 = 8, and the standard deviation of the Gaussian
noise is 10. (b) Bidirectional case, with α12 = α21 = 8, and the standard deviation of the Gaussian noise is 10.

condition since it has a singularity at the origin. The governing
equations are given as follows:

ẋ = xy

x2 + y2
− ξ1x,

ẏ = y2

x2 + y2
− ξ2y+ ξ2 − 1.

(7)

We choose the parameters ξ1 = 0 and ξ2 = 0.7, for which
the system displays “chaotic” behavior, which is more
precisely referred to as “S-chaos” (singularity-chaos).36,37

Next, we implement our algorithm on the time series
data generated by solving Eq. (7) using ode45 in Mat-
lab. We choose four pairs of initial conditions for x
and y as follows: [x0 = γ = 0.5, y0 = α = 1.5], [x0 = δ =
0.15, y0 = α = 1.5], [x0 = γ = 0.5, y0 = β = 2.5], and [x0 =
δ = 0.15, y0 = β = 2.5]. We further add Gaussian observa-
tion noise with 0 mean and 0.1 standard deviation. Next, we
implemented our algorithm, and ran it ten times and noted the
dominant causal direction that it detected. Interestingly, the
algorithm detected the correct causal direction in each run,
indicating bidirectional coupling.

D. Real-world system

To evaluate the performance of our algorithm with
respect to a real-world system, we built a nonlinear circuit
in which an LC oscillator is used to drive an inverting ampli-
fier. The detailed circuit diagram is provided in Fig. 6(a). We
treated the output of the LC oscillator and the output of the
inverting amplifier as our two dynamical variables. The sig-
nals recorded from these two channels are referred to as X and
Y in Fig. 6(a). The input voltage VCC was used to intervene
in the system in order to attain the desired initial condi-
tions. We chose four pairs of initial conditions for X and Y
as follows: [X0 = γ = −0.58 V , Y0 = α = 2.6 V ], [X0 = δ =
−0.48 V , Y0 = α = 2.6 V ], [X0 = γ = −0.58 V , Y0 = β =
1.94 V ], and [X0 = δ = −0.48 V , Y0 = β = 1.94V ]. We
recorded a sample of size 2496 at an interval 4E× 10−8

s. In this experimental setup, X drives Y . The signals are
plotted in Fig. 6(b) for reference. Next, we implemented
our algorithm and ran it ten times and noted the dominant
causal direction that it identified. Interestingly, the algorithm
detected the correct causal direction in each run, identifying

(a) (b)

FIG. 5. The performance of the algorithm is measured in terms of accuracy (with a range of 0 to 1 as indicated by color) for both (a) unidirectional and
(b) bidirectional case.
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(a) (b)

FIG. 6. (a) Circuit diagram used for generating the real-world data. LC op amp oscillator is used to control the inverting amplifier. (b) Two signals, namely
X and Y , that are recorded simultaneously at four different initial conditions.

X as the cause. We further implemented TE and CCM, to
compare the performance with respect to our tool. TE cor-
rectly detected the coupling direction from X → Y , whereas
CCM incorrectly inferred bidirectional coupling.

VI. DISCUSSION AND FUTURE SCOPE

In the present work, we use the concept of pseudo-
symmetries to detect unidirectional and bidirectional causal-
ity. We compare the performance of our algorithm to that of
TE and CCM when applied to noisily sampled two-species
competitive Lotka-Volterra systems. In this context, both TE
and CCM can in principle detect the causal influences. How-
ever, tests demonstrate that both these tools fail often in the
presence of significant noise, particularly with bidirectional
coupling. On the other hand, the proposed algorithm based
on comparisons of pseudo-symmetries is accurate across all
of the conditions examined. To demonstrate the application
of the present approach to real-world systems, we constructed
a circuit in which one voltage drives another. The algorithm
accurately identified the correct causal direction. The sym-
metry approach is therefore a viable alternative to existing
tools when dealing with noisy real-world data that may exhibit
any combination of causal influences between dynamical
variables.

The present approach relies upon observing behavior for
four pairs of distinct initial conditions. The simplest way to
achieve this is by intervention on the system. But, given the
possibility of intervention, an alternate approach to identi-
fying causal direction suggests itself, namely a direct com-
parison of trajectories. For example, comparing

−→̃
xα with

−→̃
xβ

and −→xα with −→xβ as in Figs. 1(a) and 1(b) would enable one
to detect that y drives x. The method we use to compare
portions of pseudo-symmetries (that can be represented by
polynomials) could be used to directly compare trajectories.
Differences in, e.g., x(t) for changes in the initial value of
y would then be indicative of causal direction (in this case,
from y to x). However, that method fails when we do not have

exact control over initial conditions. To test this assertion, we
compared the present method with that of such a trajectory
comparison method by adding Gaussian noise to the initial
conditions, and then letting a Lotka-Volterra system evolve in
time. Under these conditions, the symmetry method performs
better in detecting the causal direction than a direct com-
parison of trajectories. Further, we consider a chaotic Dixon
system, to verify the performance with respect to noisy initial
conditions. The symmetry method detected the correct causal
direction. Although it is simpler to intervene, it is often not
necessary. For a sufficiently long time series, a purely obser-
vational dataset can often be segmented in such a way that,
when each segment is treated as a separate time series, the
requisite set of initial conditions are at least approximately
obtained. This is sufficient for applying the algorithm, albeit
at some cost to accuracy.

This first version of the algorithm is, however, limited
to first-order autonomous systems. It is also the case that the
present version of the algorithm is applicable only to systems
having two time-dependent variables. The most straightfor-
ward approach to extending this method (or the direct com-
parison of trajectories mentioned above) to systems with more
variables would require a geometric increase in the number of
initial conditions as a function of the number of variables. We
see two approaches to generalizing our method that avoids
this problem. On the one hand, it is possible to assess direc-
tional gradients of the surfaces that correspond to components
of a dynamical symmetry in ways that do not involve com-
paring pseudo-symmetries. If this can be done with accuracy
from typical time series data, then in principle we would not
be limited by the large number of initial conditions demanded
by a straightforward generalization of the current approach.
On the other hand, it is possible to preserve causal informa-
tion while reducing many variable systems to approximate
two-variable systems.38 Both approaches are left for future
work.

Finally, our algorithm, though it reliably detects bidirec-
tional influence, yields only a binary decision; it does not
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indicate the relative degree of causal influence in either direc-
tion. But such information can be gleaned after a reliable
detection is made by applying one or another continuous
measure of the degree of causal influence.

Despite its limits, the algorithm presented is a demon-
stration of the potential of symmetry methods for the reliable
detection of causality when data is noisy, causation may be
bidirectional, and coupling strengths vary. This work only
begins to open a wide scope for improvement, which is left
for future studies.
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