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Abstract

It has been suggested that puzzles in the interpretation of quantum mechanics
motivate consideration of ‘non-individuals’, entities that are numerically distinct
but do not stand in a relation of identity with themselves or non-identity with
others. I argue that talk about non-individuals is either meaningless or not about
non-individuals. It is meaningless insofar as we attempt to take the foregoing
characterization literally. It is meaningful, however, if talk about non-individuals
is taken as elliptical for either nominal or predicative use of a special class of
mass-terms.

It is something of a truism that we ought not to read our metaphysics off of the
structure of our language. But it is also the case that any metaphysics we might know
and describe must be known and described through the medium of language. The way
in which meanings attach to words must therefore circumscribe, however loosely, the
possible metaphysical theories we are capable of articulating. There are bounds to what
can be meaningfully asserted. To stray outside these is to utter nonsense.

This is precisely what has happened in a trendy corner of the philosophy of physics.
Vexed by puzzles in the interpretation of quantum mechanics, a number of philosophers
have begun to talk about “non-individuals.” This, I suggest, is unhelpful. Either talk
about non-individuals is nonsense, or it is not about non-individuals.

1 What’s a non-individual, and why would anybody

talk about one?

The impetus for talk about non-individuals is quantum mechanics. The reasons are well-
documented elsewhere (French and Krause, 2010a), but to give a sense for how such
arguments go, I’ll sketch a standard trope in the literature that draws upon features
of quantum statistical mechanics.1 Ignoring some technical details of quantum state
representations, the argument runs like this. Take it as a premise that all distinct (if
not qualitatively distinguishable) configurations of particles and properties are equally
probable. We might say that each distinct state receives an equal portion of probability.
Consider, for example, the case in which we have just two particles, call them p1 and

1See, e.g., (Post, 1963; Reichenbach and Reichenbach, 1999; French, 2000; French and Krause, 2010a).
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p2, and two distinct bundles of properties that may be predicated of each, call them M1

and M2. If we denote the proposition that pi possesses properties Mj by Mj(pi), then
classically there are four distinct states in which we might find such a system:

1. M1(p1) ∧M1(p2),

2. M1(p1) ∧M2(p2),

3. M2(p1) ∧M1(p2), and

4. M2(p1) ∧M2(p2).

The probability of finding one particle in M1 and one in M2, irrespective of which is
which, is given a portion of probability twice as large as the other states (1/2 versus 1/4).
This simply reflects the fact that two distinct states match that description. According
to QM, however, states in which one particle has properties M1 and the other has M2

must be granted a portion of probability as though there is but a single state.2 In other
words, the two possibilities (2) and (3) are treated as one. Thus, we have the elements
of a modus ponens. If (2) and (3) were distinct states of the world, then each state
would have to be assigned a unit weight relative to the other possibilities. Quantum
statistical mechanics tells us that in fact the two states combined receive a unit of
probability. Therefore, quantum state representations with particle names permuted do
not represent distinct states. This is supposed to suggest that in the case of quantum
particles, “...labels are otiose” (French, 1998, p95).

There are many difficulties with the argument sketched above, and I haven’t the
space here to give the technical issues their due. However, let us take the argument at
face value and consider the notion of ‘non-individual’ it suggests. According to the prin-
cipal proponents of this view, non-individuals are entities that are numerically distinct
and yet fail to stand in relations of self-identity. In other words, there is no relation that
holds only between a non-individual and itself. As French is fond of putting it, they dif-
fer solo numero (French and Krause, 2010a). If quantum particles are non-individuals,
this would explain their strange statistics. For there to be a difference between M1(p1)
and M1(p2), it must be the case that the subscripts label distinct particles. But if that
were true, the particles would stand in a relation that acts like self-identity. Specifically,
particle 1 is that which uniquely bears the label p1. Since non-individuals cannot stand
in such relations, it must be that they cannot be uniquely referenced. In that case, one
cannot assert a distinction between M1(p1) and M1(p2). Nonetheless, there are deter-
minately many of them in a collection, just as there are determinately many hydrogen
atoms in a given flask. The new category of non-individual handily accounts for these
facts.

2Roughly speaking, there are actually two possibilities corresponding to two basic kinds of particle.
For bosons, the states in which one particle possesses M1 and the other M2 would receive a combined
probability of 1/3 as would each of the states M1(p1)∧M1(p2) and M2(p1)∧M2(p2). For fermions, the
only possible state is that in which one particle possesses M1 and the other M2.
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But what can it mean to differ solo numero? It’s easier to say what this cannot
mean. If ‘numerical distinctness’ is understood in anything like the usual way, then
non-individuals cannot be numerically distinct and yet fail to be identifiable. In the
standard set-theoretic definition, cardinality essentially involves a notion of mapping
or correspondence that is conceptually equivalent to labeling. Specifically, the cardinal
associated with a set A (intuitively, the number of things in A) is the smallest ordinal
number n such that there is a bijection from the elements of A to the elements of n. To
put it more plainly, two sets are the same size as one another if their elements can be
brought into one-to-one correspondence, that is, if the elements of one can be used to
uniquely label elements of the other. Ordinals are just specially constructed sets whose
elements are rigidly ordered (i.e., there is a binary relation, <, such that for every pair
of elements a and b, either a < b or b < a). The ordinal number 3, for instance, is the
set {0, 1, 2}. The cardinality of a set is the smallest ordinal of the same size. Put yet
another way, the cardinality of a collection is what we get by a generalized counting
procedure in the intuitive sense of counting. After all, counting is really just a sort of
indexing by which we point at distinct things and label them by saying “one”, “two”,
“three”, etc.

The relation between identity and cardinality is not a metaphysical fact, but rather
a semantic one. I do not mean to suggest that there is some metaphysically necessary
association between identity and cardinality. Rather, I am claiming that what it means
for entities in a collection to be numerically distinct is for the collection to possess a
cardinality greater than one. And part of what it means for a collection to possess a
definite cardinality — on any standard account of cardinality — is for the entities to be
identical with themselves and no others in the collection.3

It is important to note that I needn’t stake a claim about the nature of the identity
relation. Cardinality requires an identity relation only relative to the collection being
counted. But this identity may be grounded in multiple ways. The identity relation may
be grounded internally by predicates belonging to the same structure as the collection
being considered. For example, it is at least contingently true that no two leaves in
my garden have exactly the same shape. Shape serves to distinguish them, and this
distinguishability underwrites an identity relation good enough to assign a cardinality
to the set of leaves. Alternatively, the identity relation for a collection may be grounded
externally with no discernible differences in the elements of the collection within the
structure in which it is presented. Consider, for instance, the vertices of a perfectly
symmetric undirected graph. Every vertex stands in precisely the same relations as
every other — there are no graph properties or relations to distinguish them. But we
could always label the vertices.

This point is worth belaboring as it generally overlooked in the literature. To give
one example, Domenech and Holik (2007) offer what they take to be a definition of
cardinality worthy of the name and suitable for the case of a collection of non-individuals.
Suppose we have such a collection, X. Informally speaking, their proposal depends upon

3See (Jantzen, 2011) for a more thorough argument along these lines, and (Arenhart, 2012) for a
rebuttal.
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the notion of ‘quasi-singleton’ defined with respect to X. For some x ∈ X, the quasi-
singleton 〈x〉 is a collection whose only sub-collections are the empty collection or itself.4

This is certainly a feature one would expect for a collection that contains just one thing.
The cardinality of X is then defined by constructing a series of sets, each of which is
derived from the previous by removal of quasi-singleton. The series terminates (if at
all) when there is nothing left to remove. Essentially, the cardinality of X is given
by the length of the chain of derived sets. This procedure is ingenious and perfectly
consistent. However, it fails at its stated aim. As Jantzen (2011) proves, the notion of
a quasi-singleton as Domenech and Holik define it provides an identity relation on the
elements of X relative to the structure in which it is presented. In other words, relative
to the collection X and all collections that may be constructed from X, membership
in a particular quasi-singleton acts as an identity relation. It is no surprise then that
we can sensibly count using this procedure. Arenhart (2012) has attempted to rebuff
Jantzen’s critique by pointing out, quite rightly, that the putative identity relation is not
a first-order identity relation on the whole universe of non-individuals and collections of
them, supposing there are others in it besides those of X. My point is simply that this
is irrelevant. The relation in question is acts like an identity relation for the collection
one is counting. What’s supposed to make non-individuals special is that a collection
of them possesses a distinct cardinality without any relation relative to that collection
serving to distinguish them one from another. We wouldn’t worry whether electrons in a
collection are in some global sense really non-individuals if it were always the case that
in any given collection of electrons, there is a property that distinguishes them from each
other. Then we could simply count property bundles, as it were, in the old-fashioned
way of counting. There would be nothing to motivate talk about ‘non-individuality’.

When I claim that the meaning of ‘cardinality’ is dependent upon the meaning of
‘identity’, I intend only to invoke a bare concept of sameness and difference. Perhaps
identity always requires distinguishability as Leibniz would have it.5 Perhaps not. Per-
haps identity is primitive in some way, independent of all other intrinsic properties as
Adams (1979) would have it. Perhaps not. The point is that some relation with the
features of identity must obtain for a collection if there is to be a definite number of
things in the collection. If you think there can be a definite number of things all of which
are qualitatively indistinguishable with respect to all of the predicates of the language
in which cardinality is expressed, then that identity relation must be either primitive or
grounded in some features not expressible in the language. But that is not a decision we
need to make. It suffices to note that the assertion that there are n things in a collection
is to assert that there is a relation of identity amongst those things such that each is
identical to itself and not any of the others in that collection. To say that the members
of a collection are non-individuals, is to deny even a weak, contextual notion of identity.
Therefore, the notions of ‘cardinality’ and ‘numerical distinctness’ must mean something

4The proposal of (Domenech and Holik, 2007) is spelled out in terms of quasi-set theory discussed
below. Thus, the technical definitions involve quasi-sets. However, to efficiently convey the gist of the
proposal, I am using the neutral term “collection” instead.

5See, e.g., (Saunders, 2003).
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else when invoked to define or describe non-individuals. So what is meant?

2 Quasi-sets as quasi-solutions

When intensional definitions that employ established terms in the definiens prove in-
adequate to convey the sense of a radically new concept, one might instead attempt to
establish the precise meaning of a new term by providing an account of the semantic role
of that term. A particularly effective tool for doing so is formal axiomatization. Axioms
in a formal language are satisfied by a subset of all possible models. Examining those
models that satisfy the axioms tells you something about what features of the world (or
possible worlds) correspond to an unknown term. In this way, concepts can be defined,
or at least circumscribed, by formal axiomatizations. So, for instance, if you wish to
understand geometric concepts like ‘triangle’, you could consider Euclid’s axioms. If
you want to understand the general notion of distance, you could consider the axioms
satisfied by all metrics, and so on. A prominent attempt to do this for non-individuals
comes from Decio Krause,6 who axiomatized a theory of “quasi-sets”(Krause, 1992).

The formal theory of quasi-sets, Q, is presented in a first-order language. It was de-
signed as a conservative extension of ZFU, the Zermelo-Frankel axiomatic theory of sets
with urelemente. In other words, there is a ‘copy’ of ZFU within Q such that theorems
of ZFU are theorems of Q as well. What’s different about Q is the introduction of a
second kind of urelemente or “atom”. In classical set-theory, the atoms are presumed to
stand in relations of identity such that each is identical with itself and no other. Krause
and French call these “M-atoms.” In Q, these classical M-atoms are complemented by
others which can be members of so-called ‘quasi-sets’, can stand in relations of indistin-
guishability (e.g., each is indistinguishable from itself), but do not stand in relations of
identity. They call these “m-atoms.” If x and y are m-atoms, then “x = y” is not a well-
formed expression of Q. This reflects the fact that, in the intended interpretation, there
is supposed to be no fact of the matter whether one m-atom is identical with another.
Of course, the point of the formal theory is to pin down this intended interpretation.
The m-atoms are the formal counterparts of non-individuals. By interpreting m-atom
terms in Q, we’re supposed to get a grip on what talk about non-individuals refers to.
It is in attempting to interpret Q however, that we encounter a problem.

The problem is that formal theories in first-order languages like ZFU are standardly
interpreted according to Tarskian semantics. Speaking coarsely, an interpretation is a
structure that includes the specification of a domain of discourse, D, as well as properties,
relations, and functions on that domain. The domain of discourse is understood to be
a set of objects (whether mathematical or physical objects). Properties and relations
amongst the objects in the domain are defined extensionally, i.e, each binary relation
R is presented in the interpretation as a set of ordered pairs 〈x, y〉 such that x stands
in R to y. Sentences in the formal language are interpreted by mapping names and
variables to objects in the domain and predicate symbols to properties and relations on

6The theory was later revised in collaboration with Steven French (French and Krause, 2010b,a).
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D. Sentences in the language are true in a structure (i.e., a particular domain and set of
extensionally defined predicates) just if the interpreted sentence is true. If all sentences
of the theory are true, the structure is said to be a model of the formal theory.

The theory Q does have models in the Tarskian sense. In fact, it can be modeled
by the sets of ZF.7 That’s how French and Krause (2010a) prove the consistency of
their axioms. The problem is that the objects in the domain of discourse must have
identity. In part, this is because that is how the elements of classical sets are conceived.
It was on these grounds that da Costa et al. (1995) expressed concern about finding an
appropriate semantics for Q. But in part the problem is implicit in the general form of
Tarskian semantics, whether or not we consider the domain a “set.” I said that names
and variables “correspond” to or “map” to objects in the domain of discourse. For this
to be the case, it must make sense to assert that a particular constant or variable refers
— and refers uniquely — to an object. The m-atoms of Q, or more accurately, the things
to which variables in the theory are supposed to correspond lack this feature. If Q is
to be interpreted in terms of non-individuals, there cannot be a mapping or reference
relation between an m-atom symbol or term in the theory and a unique entity. For this
reason, the interpretation of Q requires a new semantics.

I do not mean merely that it requires us to consider structures other than classical
sets as models. The problem is rather deeper. The relation between formal sentences
and possible worlds in the Tarskian scheme is one in which symbols label or uniquely
and unequivocally denote particular objects. Furthermore, we’re supposed to be able to
describe properties and relations extensionally with sets of ordered tuples. Neither of
these is possible for non-individuals. What we need is a whole new semantics for the
formal theory.

In an attempt to find an alternative to Tarskian semantics, Arenhart and Krause(2009)
have undertaken the exercise of constructing both the logic underlying Q and a formal
semantics for the theory in terms of Q itself. That is, they have used the theory of
quasi-sets to define the language and state the axioms of Q, and to provide a semantics
for interpreting sentences of the theory. As they point out, something similar can be
done for classical ZF. Depending on one’s purpose, there is nothing illicit about using
one and the same language as both the object language and the metalanguage. But if
the purpose is to use axioms along with a given formal semantics to understand a new
concept, it is problematic to describe the semantics in terms of the very concept we are
trying to understand. The question is whether we can use the new notion of a ‘model’
of the axioms of Q to help us understand terms like ‘non-individual’.

To see why there might be a problem with this strategy, consider the classical case.
Tarskian semantics shares only a handful of notions with set-theory, namely the idea
of a set, ordered tuple, and mapping or assignment.8 These notions all have relatively
clear, intuitive meanings independent of any particular formal theory or mathematical
exposition. Thus, if one wanted to understand an idea like set membership or power set,

7That is, by Zermelo-Frankel set theory without urelemente, only sets.
8The fact that Tarskian semantics does not presume the full conceptual resources of a single theory

of sets is demonstrated by the existence of ‘non-standard’ models of set-theory.
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then one could use Tarskian semantics to investigate models of a set of axioms without
circularity or contradiction. But if one wanted to understand, say, identity there would
be trouble. Identity is one of the notions essential to Tarskian semantics, and so looking
at models of a theory of identity would teach us nothing about identity. We would have
to know what identity means before we could understand what models are in the first
place. For understanding non-individuality, quasi-set theory is similarly impotent. We
cannot understand non-individuality using a semantics stated in terms of Q because the
relevant notions for stating the semantics derive from the notion of non-individuality.
The portions of quasi-set theory we need in order to understand the proposed semantics
involve precisely the notion we are trying to learn about by employing a formal semantics.
Just as classical formal logic with Tarskian semantics is not very helpful for teaching
us what identity is, quasi-set theory with its mysterious semantics is useless for gaining
an understanding of non-individuals. For this purpose, the relation between formal
semantics and meta-language is viciously circular.

3 A semantical dilemma

If we cannot understand non-individuals through the formal axiomatic theory of quasi-
sets, how should we understand talk about non-individuals? I suggest we look again to
physics. It was physics that motivated such talk in the first place, specifically puzzles
about quantum particles. It is clear that at least some talk about quantum particles is
meaningful. Physicists successfully coordinate expectations, agree on logical relations,
and by and large agree on truth conditions for claims about systems of quantum particles.
If we assume they are successfully talking about ‘non-individuals’, what can be said
about the meaning of this term? The answer is surprisingly mundane. Those assertions
about particles or systems of particles which undeniably have semantic content behave
not like count terms as one would expect for either classical particles or non-individuals,
but rather like mass terms.9

In the context of non-relativistic quantum mechanics, the only properties one can
uncontroversially ascribe to a quantum system correspond to symmetric operators (oper-
ators which commute with the so-called permutation operators).10 These are properties
that do not reference any specific particle. They allow you to make claims such as:

(S1) One electron in the system is spin-up, the other spin-down.

(S2) The total angular momentum is J .

It is also possible, without violating the postulates of QM to make assertions like:

(S3) The particles in the box are pions.

9I agree with (Koslicki, 1999) that the mass/count distinction properly applies to occurrences of a
term, not the term itself. For ease of exposition, however, I will elide this distinction.

10For an overview of the relevant formalism, see (Messiah and Greenberg, 1964) and (Hartle and
Taylor, 1969).
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(S4) Lithium atoms have 3 electrons.

Importantly, there is a close parallel between sentences like (S1)-(S4) and the follow-
ing:

(S5) Half of the liquid is vinegar, the other half is water.

(S6) The total mass is m.

(S7) The liquid in the beaker is glycerol.

(S8) A shot of whisky has 0.6 oz. of alcohol.

In each of the sentences (S1)-(S4), we see particle types being predicated of a system
just as the ordinary mass-nouns in (S5)-(S8) are predicated of individuals. We might
rephrase (S1) to read: “Half of the electron-stuff is spin-up and half is spin-down.” This
has precisely the same structure as (S5) where “electron-stuff” acts like the mass-noun
“liquid”. In similar fashion, we can rephrase (S4) as, “A standard unit of lithium atom
has 3 units of electron.” This is awkward but clearly identical in form to (S8). My
rephrased sentences look strange, but that is because the weight of history is behind
using words like particle and electron syntactically as count-nouns. Insofar as sentences
involving those terms are uncontroversially meaningful, however, they act like disguised
mass-nouns. Only metaphysical prejudice could keep us from taking their semantic role
at face value.

One might at this point insist, as French and Krause (2010a) do, that terms like
“proton” cannot be read as mass nouns since they fail to divide their reference. A limited
division of reference is necessary for mass predication, and so it seems quantum sortals
cannot be cast in the mold of mass-noun predications. But this I suggest is another
instance of the the mistake diagnosed above. When French and Krause provide explicit
examples of the criterion of identity, they speak of systems. They say, for instance, that
“physicists have the possibility of recognizing...whether a given physical system is, say,
an electron system or not” (French and Krause, 2010a, p350). “Electron” in this case is
predicated of a system; it is not acting as a sortal. It clearly does divide its reference,
since systems do have parts. That they have minimal parts — that some parts of an
electron system are not themselves electron systems — is not a worry; the same is true of
many ordinary mass-nouns like “furniture.” There is thus nothing in the way of treating
particle terms as mass-nouns.

Confusion was perhaps inevitable in that physicists and philosophers treat “electron”
syntactically like a sortal but semantically like a mass-noun. Perhaps it would be less
confusing to substitute “electron-stuff” or “unit of electron” for “electron”, depending
on the circumstance. It is often predicated of systems, as in “the charged particles
in the quantum dot are electrons”, but it is also used nominatively when quantified,
as in “atoms with three electrons.” In the former case, “electron-stuff” is a more apt
substitution, as in “The charged material in the quantum dot is electron-stuff”. In
the latter case “unit of electron” may be more appropriate, as in “atoms bearing three
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units of electron.” The point is that the term “electron” and other quantum terms
like it meaningfully function only as mass-nouns. In other words, the semantic roles of
particle talk in quantum physics just are the semantic roles of mass-nouns. I suggest
that the notion of a non-individual has arisen from a confusion between number and
quantity, count-noun and mass-noun. Once we see that we are dealing with mass-noun
predication, there is no need to invoke non-individuality.

Though I obviously lack the space here to elaborate a full semantics and logic of
mass-terms in quantum mechanics, the lesson is clear. Insofar as talk about ostensible
non-individuals is meaningfully, it exhibits all the features of talk about mass-terms. If
we take this to be the case, then the necessary semantics is no more (or less) mysterious
than the semantics of mass-terms. But then the notion of ‘non-individual’ is superfluous.
Here, then, is the semantical dilemma. On the one horn, we can attempt to interpret
talk about non-individuals directly along the lines of quasi-set theory. But we lack a
suitable semantics for doing so. On the other horn of the dilemma, we can embrace
a semantics of mass-terms. But then we are not talking about non-individuals, we’re
talking about individual somethings with properties expressed via the mass-predication
of a term.

4 Conclusion

I have argued that the definition of non-individuals as entities that differ solo numero is
incoherent if taken literally, and that there appears to be little hope of providing an al-
ternate account of non-individuality with the desired characteristics. I also claimed that
the sort of assertions in physics that inspired the introduction of non-individuality talk
are meaningful, but only when we recognize that words long used as count-terms are
functioning as mass-terms. Fortunately, reinterpreting quantum terms as mass-terms
requires a far more modest logical and semantic project than producing a theory of
non-individuals. In fact, interpretations of quantum mechanics that treat references to
particles in this way can already be found in the philosophical and scientific literature.
For instance, Wallace and Timpson (2010) have elaborated a realist reading of quantum
theory (viable in relativistic and non-relativistic contexts) that treats regions of space-
time as fundamental—and conventionally individual—objects. Quantum particles or,
more suggestively, quantities of discrete particle stuff, are properties of these regions. In
quantum chemistry, an approach called ‘Atoms in Molecules’ or AIM is an important
competitor to Density Functional Theory (Bader, 1990, 1991; Popelier, 2000). Broadly
speaking, AIM treats the electron density function ρ (the square modulus of the many-
electron wave-function) as the primary theoretical entity from which all chemically rele-
vant properties can be derived. More specifically, atoms, molecules, and chemical bonds
can all be defined in terms of geometric features of the gradient field on ρ. Atoms, for
instance, consist of the union of an attractor (a point at which field lines converge) and
its basin (the region of space from which the convergent field lines originate). In other
words, the properties traditionally attributed to particles—whether individuals or not—
are treated as quantities of stuff belonging to a spatial region. Adopting a mass-term
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semantics for quantum particle talk is thus perfectly compatible with drafting serious
and intelligible interpretations of quantum physics.

Whatever full interpretation is ultimately adopted, particle terms are mass-terms
with minimal parts. In this sense, they are not so exotic. The breathless story of
quantum mechanics forcing us into a brave new world of metaphysical possibility in
which the very notion of self-identity fails to apply is surely full of sound and fury.
I have argued that key terms in this story signify nothing. To insist on pursuing a
discussion in terms with no clear meaning is more mysticism than metaphysics.
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