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Abstract Scientific practice involves two kinds of induction. In one, general-
izations are drawn about the states of a particular system of variables. In the
other, generalizations are drawn across systems in a class. We can discern two
questions of correctness about both kinds of induction: (P1) what distinguishes
those systems and classes of system that are ‘projectible’ in Nelson Goodman’s
(1955) sense from those that are not, and (P2) what are the methods by which
we are able to identify kinds that are likely to be projectible? In answer to the
first question, numerous theories of ‘natural kinds’ have been advanced, but
none has satisfactorily addressed both questions simultaneously. I propose a
shift in perspective. Both essentialist and cluster property theories have tradi-
tionally characterized kinds directly in terms of the causally salient properties
their members possess. Instead, we should focus on ‘dynamical symmetries’,
transformations of a system to which the causal structure of that system is
indifferent. I suggest that to be a member of natural kind it is necessary and
sufficient to possess a particular collection of dynamical symmetries. I show
that membership in such a kind is in turn necessary and sufficient for the
presence of the sort of causal structure that accounts for success in both kinds
of induction, thus demonstrating that (P1) has been answered satisfactorily.
More dramatically, I demonstrate that this new theory of ‘dynamical kinds’
provides an answer to (P2) with methodological implications concerning the
discovery of projectible kinds.

Keywords Discovery · Induction · Natural kinds · Projectibility · Symmetry

1 Introduction

It is a truism that some schemes for categorizing natural systems have per-
mitted successful generalization from a sample of particulars; others have not.
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Yet others, in the extension of predicates like Goodman’s ‘grue’ are deemed
defective a priori. What distinguishes the good categories or kinds from the
bad, however, is far from obvious. There is a rich literature on ‘natural kinds’
that seeks to explain the difference. While diverse, the existing accounts of
natural kinds — theories of what distinguishes kinds that admit of successful
generalization from those that do not — share an approach. They all assume
that kinds are to be characterized in terms of the very qualities that feature
in successful generalizations involving those kinds. Essentialist theories, for
example suppose that a natural system belongs to a particular kind when it
possesses the properties necessary and sufficient for membership in that kind.
The relevant properties are generally assumed to be theoretically salient fea-
tures such as charge or proton number, the very properties that feature in
scientific generalizations.

I suggest instead that characterizing the natural kinds in terms of what is
causally irrelevant underwrites a theory of natural kinds that, while sharing
important elements in common with existing views, offers better answers to
questions about scientific induction. The remainder of this section spells out
those questions about kinds and scientific induction, and surveys the suitability
of various approaches to natural kinds as potential answers. In Section 2, I
reinterpret these questions from a complementary perspective grounded in the
notion of a ‘dynamical symmetry’, and in Section 3 I develop a theory of
natural kinds in terms of this new perspective. I then argue that this new
notion of natural kinds evades some problems faced by other theories while at
the same time answering some questions left open by other approaches. More
importantly, I show that this theory offers some novel methodological advice
for discovering natural kinds. This is perhaps the strongest sort of evidence one
can offer in favor of a theory of natural kinds. To borrow from Quine (1969,
p129), “In induction, nothing succeeds like success.” A theory of inductively
useful kinds that results in successful induction is, ceteris parabus, a better
theory than one that doesn’t.

1.1 Science and projectibility

Empirical science involves the iteration of two sorts of induction.1 The first
concerns the behavior of particular systems, such as a specific particle col-
lider or the chemical reagents in a particular beaker. The generalizations to
be drawn involve relations amongst the variables associated with the system.
These relations may be more or less quantitative, and have to do with which
values of one variable are associated with which values of the others over a
range of counterfactual situations. So for instance, one may generalize about
the relation between oscillation period and arm length for a particular pen-
dulum, or the initial and final concentrations of chemical species mixed in a

1 I don’t mean to suggest that this is all which empirical science involves or aims at. Nor
do I intend to suggest that this is a complete taxonomy of the kinds of inductive practice.
For an example of a more complete taxonomy, see (Earman, 1985).
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particular apparatus. Inductions of this variety involve projecting from ob-
served states of the system to other states that would obtain given that some
of the variables take on different values. For lack of imagination, I’ll call in-
ductions of this sort system inductions.

The second sort of induction is over systems. Inductions of this sort involve
extrapolation from the properties of a finite (typically small) set of particular
systems (e.g., the orbit of the Moon about the Earth) to a potentially infinite
class of actual and possible systems (e.g., all orbital systems). Given that the
acceleration of this satellite is proportional to the inverse square of its distance
to the planet, so too does it hold for all such gravitating systems. Given that
energy is conserved in this mechanical system, energy is conserved for all such
mechanical systems. Call these kind inductions.

Both varieties of induction pose questions of correctness. Of all the variables
we can conceive, which are suitable for generalization in particular systems? Of
all the classes of system we could construct, which are amenable to projection?
These are, of course, just different manifestations of Goodman’s ‘new riddle of
induction’, at its heart a puzzle about distinguishing ‘projectible’ kinds from
the non-projectible, to use Goodman’s terminology (1955). In terms of scien-
tific practice, what characterizes the systems of variables that are projectible,
either in the context of system or kind induction?

There are a couple of clarifications to be made. First, when I speak of
projectibility, I do not mean to refer to a predicate but to a class of things in
the world, i.e., to the extension of a predicate. While reference must invariably
be made via a predicate, it is the class itself that has the feature of projectibility
I’m interested in. I will generally use the term ‘kind’ in lieu of ‘predicate’ to
signal this intention.2 Second, by calling a kind ‘projectible’, I mean that (at
least some) scientifically significant generalizations over that kind are in fact
true; the systems or system states not in evidence really would be found to have
the projected feature if they were realized and examined. I do not mean that
one is justified in drawing inferences about instances or systems not currently
in evidence; whether this is true given that a kind is projectible depends upon
one’s available evidence and upon one’s theory of inductive inference. A kind
may actually be projectible and yet an epistemic agent may be unjustified
in drawing inductive inferences over that kind given her epistemic context.
Nor do I mean that we actually have used the kind in inductive inferences.
Again, whether or not a kind is objectively projectible in the sense I intend
it is independent of whether or not anyone bothers to identify that kind and
draw inferences about it.

Lastly, I want to emphasize the question at issue. I am not asking about
the justification for either sort of induction. Nor am I asking why there is
regularity in nature, a question that I, like Quine (1969), doubt can be given
a satisfying answer. Rather, I take for granted that some kinds are projectible

2 Though Goodman (1955) frames his problem in terms of predicates—linguistic entities—
his solution is in terms of the extensions of those predicates. Specifically, what he calls
“entrenchment” pertains to a class that may be named by many predicates.
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in that they support successful system and kind inductions. The question is
what sets these kinds apart from those that do not.

1.2 Two problems of projectible kinds

For each of the two sorts of scientific induction described above, there are
really two logically distinct but interrelated problems of projectibility:

P1 For system induction, what characterizes those systems of variables which
will support projection across states of the system? For kind inductions,
what, if anything, distinguishes the projectible kinds of system from the
non-projectible?3

P2 What is (are) the method(s) for recognizing, discovering, or selecting sys-
tems and kinds of system of the right sort to be projectible? Or in other
words, how can we efficiently identify systems and classes of system for
scientific investigation?

As I said, in a given context the two questions are logically distinct. It
may be the case that, aside from their projectibility, the projectible kinds
of system all share some set of features in common that are not possessed
by non-projectible kinds, and yet there is no method by which we can strike
upon the projectible kinds at a rate better than chance. On the other hand,
it is possible that there is some method for identifying projectible kinds, and
yet these kinds share nothing in common (other than their projectibility) that
they don’t also share with at least one non-projectible kind. In other words, it
may be possible to systematically generate members of the class of projectible
kinds, and yet members of that class may have nothing in common that sets
them apart. A good analogy is with the theorems of first-order logic for a given
language and system of natural deduction. It is possible to generate theorems
with the rules of the natural deductive system, but there is no property shared
by all theorems other than their derivability.

One might be inclined at this point to treat the second question of pro-
jectibility as superfluous. After all, a method for finding projectible predicates
seems an awful lot like a ‘logic of discovery’. Popper (2007) and Laudan (1981,
ch. 11), amongst others, have argued there is no such thing, and that even if
there were, it would be philosophically uninteresting. It is not my aim here
to take up these arguments afresh. I will, however, stress some empirical facts
about the scientific enterprise itself, facts that demand an explanation. Grant-
ing that empirical science is enormously successful at discovering (and making
use of) projectible kinds, it is a remarkable fact that this success comes at
such comparatively low cost. I do not mean to deny that even the meanest
scientific discovery is purchased at the price of enormous labor, patience, and
persistence. Rather, I mean to point out that for any new empirical domain
for which science has uncovered projectible kinds, the relative proportion of

3 I mean (P1) in a thin sense: the shared feature of a kind may or may not be that in
virtue of which it is projectible.
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successes to attempts is astonishingly low if we are merely guessing. In fact,
since there is an unlimited (and probably continuous) set of kinds one can
define for any given empirical domain — an infinite number of ways to ag-
gregate systems into classes — one would expect the probability of drawing a
projectible kind from this set at random to be vanishingly small. The history
of science is indeed a graveyard of discarded theories and discarded kinds,
but the deceased do not outnumber the living by many orders of magnitude.
Rather, scientists seem to be doing much better than random when choosing
which kinds to investigate. This is a puzzle. To echo Quine (1969, p126), why
should our pre-theoretical choices of variables and clustering of systems accord
so well with the “...functionally relevant groupings in nature so as to make our
inductions tend to come out right?”

Of course, our success at spotting projectible kinds is only mysterious if
most arbitrarily constructed kinds are not projectible. This may be mistaken
— it may be that just about anything we choose to look at will turn out to
support projection of one sort or another. This seem unlikely, particularly in
light of Goodman’s observations about ‘grue’ and ‘bleen’ and other seemingly
defective predicates. But if one could provide a compelling argument that this
is the case, question (P2) would be mooted. Absent such an argument, how-
ever, it seems as pressing as the first question about projectible kinds. There
are certainly others who take the question seriously. Mattingly and Warwick
(2009) just recently attempted to make progress on a special case of (P2). In
particular, they raised the problem of ascertaining the projectible predicates
for complex computer simulations that in turn are supposed to inform us about
analytically intractable natural systems. They ultimately advocate an exper-
imental approach to determining those predicates, though they provide only
sketchy details. The point is that they make a strong case for the importance
of answering (P2) if complex computational simulations are to yield useful
conclusions about the systems they are meant to model.

I take it then, that any theory of projectibilty that can answer both (P1)
and (P2) is superior, ceteris parabus, to a theory that answers only one, and
a theory that answers them for both system and kind induction is superior
to a theory that doesn’t. My aim in this essay is to provide a new approach
to answering the first question of projectibility, and to argue that this ap-
proach offers a more promising route to answering the second than any of its
competitors for many if not most scientifically salient kinds.

1.3 Natural kinds and projectibility

In the search for answers to (P1) and (P2), I’ll set aside Goodman’s efforts
at solving his own puzzle, as they have largely been superseded by theories of
‘natural kinds’. Theories bearing this name have been advanced to serve a wide
variety of aims, and the phrase itself has been given a diversity of meanings.4

4 Quine, for instance, restricts the term ‘kind’ to collections defined by similarity relations.
Since, in his view, mature sciences have no use for such similarity relations, there are no
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Though Mill (1858), Venn (1866), Quine (1969), and Goodman (1955) all
invoked a notion of natural kinds (whether or not they used that term) in order
to explain aspects of inductive success, the philosophical emphasis has shifted.
Since the work of Putnam (1973; 1975) and Kripke (1980), theories of natural
kinds have been pursued largely in the service of semantics, in particular in
attempts to understand proper names. There is also a community interested
in the metaphysics of natural kinds, particularly questions of naturalness and
what it is to be a ‘kind’ as opposed to a set, or grouping (Lewis, 1983; Lowe,
2006; Hawley and Bird, 2011). As illuminating as this work has been in its
own context, my interest is strictly in answers to (P1) and (P2). It is with this
in mind that I have culled from the literature on natural kinds, and it is to the
relevant subset of theories I mean to refer when I mention theories of natural
kinds.

So what can natural kinds tell us about projectible kinds? The idea is
that a kind is projectible just when its extension coincides with an ‘objective’
division of the natural world, in the sense that it does not depend upon hu-
man interests or conceptual schemes; it is determined by nature, not us. The
categories marked out by such divisions are called natural kinds. Of course,
without a substantive account of what precisely the natural divisions are, the
natural kinds solution to (P1) is not much better than noting that there exist
projectible kinds. Fortunately, theories abound. In the modern literature, they
can be loosely grouped into two types: essentialist and property cluster.

Essentialist theories of natural kinds are united by a common set of as-
sumptions (Ellis, 2001, 2005):

(i) There is a set of necessary and sufficient conditions for membership in
a natural kind. Generally this is taken to be a set of intrinsic properties
which jointly comprise the ‘essence’ of the kind.

(ii) Natural kinds are categorically distinct. There is no vagueness concerning
membership; either an entity possesses the requisite essence, or it does
not.

(iii) Natural kinds are non-overlapping. No two natural kinds can share a
member without one kind being entirely included in the other.

(iv) The essence of a kind determines or is responsible for many of the qual-
ities associated with the kind.

According to essentialist accounts, if a putative kind shares an extension with
a natural kind, then it will support successful categorical inductions, at least
with respect to those properties (relations, etc.) which are held in virtue of
the essential properties of the kind. As T. E. Wilkerson puts it,

If I know that a lump of stuff is gold, or that the object in front
of me is an oak, I am in a position to say what it is likely to do next,
and what other things of the same kind are likely to do. I know for

‘natural kinds’ in science. I am only interested in notions of natural kind that stand as
possible responses to (P1). Most of the views considered here take scientific categories to be
paradigm examples of natural kinds.
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example that the gold cannot turn into water, and that the oak will
not in due course produce tomatoes. And I know that no other piece
of gold could be persuaded to turn into water, and no other oak could
be persuaded to produce tomatoes. Certain outcomes are ruled in, and
others are ruled out, by the real essences of gold or oaks.(1988, p30)

However, essentialism offers little hope of answering (P2). While every nat-
ural kind possesses a unique essence, essences are themselves quite inhomoge-
nous. There are no properties that belong to the essence of every natural kind
(with the exception of belonging to a natural kind), and no higher-order fea-
tures of essences that distinguish them from arbitrary sets of properties, and
so no particular marker of natural kindness that would let us assess whether
a putative essence really belongs to a projectible kind. Furthermore, there is
no obvious way to generate a list of essences. So it seems that the only way
we could come to discover projectible kinds efficiently is via some sort of Aris-
totelian cognition of essences from particular samples. This is not a plausible
route.

Currently more popular, especially amongst philosophers of biology, are
property cluster theories. What unites these accounts of natural kinds is their
rejection of necessary and sufficient conditions. More specifically, they assert
that there is no particular property or combination of properties that each
member of the kind must possess, nor any one that is sufficient. Instead, kinds
are characterized by a “cluster” of properties or relations that tend to co-occur
under a range of counterfactual conditions, but covary imperfectly. As N. E.
Williams aptly put it, what matters for membership in the kind, “...is the
extent to which the properties a substance instantiates overlap with the prop-
erties in the cluster, which can be satisfied to varying degrees”(2011)(emphasis
in the original).

Of the property-cluster theories of natural kinds, the most widely discussed
is Richard Boyd’s homeostatic property cluster (HPC) theory (Boyd, 1988,
1989, 1991, 1999). On this view, the clustering properties tend to co-occur due
to causal “homeostatic” mechanisms. Each token member of an HPC kind in-
stantiates a mechanism that tends to maintain the cluster of properties in that
individual, i.e., each instance of a kind instantiates a mechanism that tends
to keep it an instance of the kind.5 HPC and its various elaborations (Korn-
blith, 1993; Griffiths, 1999; Wilson, 1999) are designed to explain the success
of inductions involving kinds, like biological species, which lack essences. The
explanation is much like that of the essentialist. The causal mechanism shared

5 There is some ambiguity as to whether these mechanisms are taken to be homeostatic
with respect to the individual, as described in the text, or with respect to the kind. In the
latter case, there is some causal mechanism such that the occurrence of one of the properties
in the cluster tends to cause the occurrence of the others, though not necessarily in the same
individual. The connection between properties is robustly maintained across many instances
by the mechanism, but in any one individual the connection may be fragile over time. Boyd
(1999) recognizes both possibilities, but the majority of discussion over HPC assumes that
each individual belonging to a kind is a distinct instance of a type of causal mechanism.
That is, each member of a kind possesses a cluster of properties maintained by an instance
of the same type of homeostatic causal mechanism.
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by all members of an HPC kind tends to maintain the presence of a cluster
of properties, and this approximate sameness in causally relevant properties
accounts for the fact that members of the same kind can be expected to be-
have in the same way in similar causal contexts. As Chakravartty (2007, p170)
puts it, “...dispositions conferred by properties for various manifestations are
present wherever such properties are found, and to the extent that the same
causal properties are found in members of the same kind, their behaviors will
be subject to inductive generalizations and predictions.”.

Despite it’s popularity, the HPC account is deeply unsatisfying. To begin
with, it simply fails to capture many or most of the categories that are the
focus of scientific investigation. The class of quasi-isolated gravitating systems
it not an HPC kind. On the face of it, there are no constant properties held
in conjunction across all such systems by a causal mechanism — the Earth-
Sun system and the Jupiter-Sun system are quite different in the masses and
separations of the moving bodies, orbital periods, total angular momentum,
etc. And yet this is precisely the class of systems over which Newton drew what
may be the most important inductive inference in the history of science.6

To draw an example from the messier ‘special sciences’, the basic kinds of
chemical kinetics present a similar problem for HPC. A first-order reaction, for
instance, is any reacting system in which the rate at which the reaction occurs
is linearly dependent on the rate-limiting reactant. Within any such system,
few properties are preserved over time — it is, after all, a reaction — so there
is no obvious homeostatic cluster associated with the kind. Furthermore, any
given time-slice of two first-order reactions can differ dramatically in all of
their chemical properties. That’s because lots of different compounds can be
involved in a first-order reaction. The HPC account clearly fails to capture at
least some scientifically salient natural kinds.7

Of course, it is unfair to insist that any answer to (P1) or (P2) capture ev-
ery projectible kind. An account that captures only a portion of the projectible
kinds would still be significant, and the HPC account should be evaluated on
how well it answers (P1) and (P2) for the subset of kinds within it’s purview.
However, even if we restrict our attention to the natural kinds that are sup-
posed to be clean examples of HPC kinds, the account fails to offer a complete
answer with respect to (P1), at least as far as kind induction goes. Carl Craver
(2009) has pointed out a sort of conventionalism lurking in the HPC account
of natural kinds. What unites two members of a kind is that they instantiate
the same kind of casual mechanism maintaining similar clusters of proper-
ties. HPC thus takes for granted that mechanisms sort into kinds. But what
objectively distinguishes mechanisms? What determines whether or not two
particular mechanisms are of the same kind, and how could we know this? For

6 There are complex features common to all members of the class. For instance, energy and
momentum are conserved. But what is the ‘causal mechanism’ that maintains the association
between the two properties “conserves momentum” and “conserves energy”?

7 Slater and others have pointed out that it seems to have trouble with kinds such as
chemical elements. But it’s not clear that this is really the sort of induction central to
scientific practice.
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Craver, this is a worry about conventionality. But it should also worry anyone
pursuing theories of natural kinds in order to answer questions about pro-
jectibility. Without an account of how mechanisms divide into kinds, the HPC
simply fails to answer (P1). At best, it pushes the question of what consti-
tutes a natural kind back from the level of particular collections of properties
to classes of casual mechanism.

Given the dominance of HPC views, this last point is worth pressing. The
HPC account is supposed to explain projectibility by pointing to the (ap-
proximate) uniformity of the causal dispositions of members of an HPC kind.
Individual things (objects or systems) possess properties, some of which con-
fer causal dispositions to produce effects in particular contexts. For instance,
all samples of reduced carbon are disposed to combust in an oxygen atmo-
sphere if provided sufficient initial energy. If all members of a kind overlap
significantly in their causally relevant properties, then we can expect them to
overlap significantly in their behavior across a wide range of causal contexts.
This similarity in behavior is supposed to support generalizations of the form,
“This member of kind K did E in causal context C, so all K’s will do E in C.”
However, bearing similar clusters of stably associated properties is obviously
not enough. It matters which internal mechanism is responsible for the stable
association of the properties. For example (and you can try this at home), put
a lithium-ion and alkaline battery in a pair of flashlights and pop them in the
freezer. One will stop producing light long before the other. This is because,
at low temperature, the relation between current and voltage changes (though
voltage is roughly maintained), and does so differently between the two bat-
teries. For there to be uniformity in response to new causal contexts, there
must be some sort of uniformity in the internal causal mechanisms shared
by members of an HPC kind. But the HPC account itself, as Craver points
out, doesn’t give us any theory of the sameness of causal mechanism. Many
different mechanisms can ‘stably’ associate the same properties and yet yield
dramatically different behavior — different relations amongst those properties
— under different external conditions.

Partly motivated by Craver’s concerns,8 Matthew Slater (2013) has re-
cently argued for a property cluster account of natural kinds that eschews an
appeal to causal mechanism. His aim is to retain those features of HPC natu-
ral kinds that are sufficient for the projectibility of the kind while purging the
rest, in particular what he sees as the metaphysical baggage that comes with
the notion of a causal mechanism. Membership in what he calls a stable prop-
erty cluster (SPC) kind requires “cliquish stability” of the cluster. A property
cluster is cliquishly stable just if the instantiation of a subcluster tends to
imply the instantiation of the full cluster under a wide range of counterfactual
conditions.

Whether or not it resolves worries over conventionality, Slater’s proposal
is a victim of its own success, at least when it comes to answering (P1) and

8 Slater is also motivated by arguments suggesting that causal mechanisms are neither
necessary nor sufficient for the sort of robust counterfactual association of properties required
for successful projection.
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(P2). I concede that cliquish stability is sufficient for projectibility. The prob-
lem is that projectibility seems to be sufficient for cliquish stability. Why? If a
category, K, is projectible, then for some significant number of properties, Pi,
generalizations of the form “x is a K and Pi(x), therefore for all or most x’s
that are K’s, Pi(x)” are true and would remain so over some appreciable range
of counterfactual conditions (that’s what distinguishes projectibility from con-
tingent association). Put differently, there is some range of conditions other
than those actually realized such that being a K is associated with possessing
all or most of the Pi. But that’s just to say that the properties characteris-
tic of K are cliquishly stable.9 Thus, to say that a kind characterized by a
cluster of properties is cliquishly stable just is equivalent to saying that it is
projectible. SPC therefore gives only a trivial answer to (P1), namely that the
feature shared by all projectible kinds is projectibility. A trivial answer to (P1)
gives us no help in answering (P2). To be fair to Slater, his aim was not to
answer the epistemic questions, but rather to provide a clear accounting of the
epistemic phenomena to be explained by a theory of natural kinds. That’s a
laudable goal, but one which gets us nowhere in actually constructing a theory
of natural kinds. All we can say on the basis of the SPC account is that some
kinds are projectible (i.e., cliquishly stable) and others are not.

1.4 Causal kinds

There is something right about the HPC account’s appeal to causal relations
and the sorts of counterfactuals they support. But the HPC is unnecessar-
ily circumspect. If relations of causation are doing all the work in ensuring
projectibility, why not simply focus on causal structure? That is, one could
define natural kinds in terms of a network of causal relations: every system
instantiating the same causal structure amongst instances of the same vari-
able types is in the same kind. That way, there’s no question about where
to draw the line. If variable X causes variable Y such that the value of Y
is a particular function of X in this system and in that system, then they
belong to the same kind. For lack of an established name, I’ll call this this
the causal kinds account. According to the causal kinds account, the answer
to (P1) for system induction is that systems with stable causal structures are
systems with projectible states, an eminently plausible view. The folks work-
ing on causal epistemology have already answered (P2) for system induction
as well. Roughly, we discover stable causal structures by detecting patterns of
independence amongst variables, particularly under interventions that change
some or all of them.10

With respect to kind induction, however, the answers are rather less im-
pressive. If a kind is characterized by a particular causal structure specified at

9 I am neglecting a great deal of detail in Slater’s account — in particular, his use of
Lange’s (2009) notion of ‘non-nomic stability’ to spell out a precise sense of counterfactual
robustness. But the rough argument I’ve provided is adaptable to these details.
10 For an overview, see (Pearl, 2000; Spirtes et al, 2000).
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the finest level of detail — functional relationships indicating which variables
causally influence which others and according to what rule — then kind in-
duction becomes trivial. Every member of a kind is exactly like every other.
There is nothing contradictory or incoherent about defining kinds this way.
However, such kinds are far more restrictive than the kinds of day to day
science. In fact, they are so narrow as to be nearly sui generis. Since the func-
tional relationships between the variables of position, momentum, and time
differ between the two, our solar system and the system consisting of the star
Kepler-22 and its single earth-like planet are in different causal kinds. Likewise
for two first-order chemical reactions involving the same reagents but differ-
ent initial concentrations — the connection between concentration and time
differs between them, and so they are distinct causal kinds. Outside of human
manufactured goods, it’s hard to imagine finding a pair of systems in the nat-
ural world that belong to the same causal kind. This may sound pedantic; it
may seem obvious that we need to take a more inclusive view of which causal
systems to lump together into kinds. The question is how we can do so without
running into Craver’s worry.

The solution is to focus not on causal structure, but on a special property
of causal structure. That property, described in detail below, is ‘symmetry
structure’. What I call the dyamical kinds theory of natural kinds is essen-
tialist: each natural kind is defined by a symmetry structure, a property that
is necessary and sufficient for membership in the kind. But it also embraces
what’s right about the HPC account. Instantiating a symmetry structure is
necessary and sufficient for a system to exhibit a stable causal structure. This
causal structure in turn supports both kind and system inductions. However,
more than one causal structure can instantiate the same symmetry struc-
ture. This allows us to recognize classes like “first-order reaction” as a natural
kind, despite an apparent diversity in causal structure. Importantly, symme-
try structures are discoverable in straightforward ways, making it possible to
answer (P2) in the affirmative — there is a method for spotting projectible
kinds. I do not claim this solution is exhaustive; there may well be other sorts
of projecitble kinds. But I do claim that the dynamical kinds theory is better
than its competitors at capturing the projectible systems and kinds pertinent
to scientific induction.

2 Looking at the ground: Classifying systems in terms of symmetry
structures

My aim in the remainder of this essay is to introduce a new way of under-
standing natural kinds that, in some respects, offers superior answers or at
least the promise of superior answers to both questions about induction. This
new perspective is best introduced by way of a metaphor.
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Fig. 1: In the left panel, the figure of the horse is shaded in black. On the
right, the ground is shaded black.

2.1 Figure & Ground

M.C. Escher was a master of manipulating the perception of figure and ground.
The term ‘figure’ refers to a region of visual space perceived as an object.
Figure is always complemented in a scene by the background, or ‘ground’.
In Escher’s Metamorphosis series, the colors perceived as figure and ground
trade places as one’s gaze scans from left to right — the white gaps between
black birds suddenly emerge as white fish with dark, bird-shaped gaps between
them. In his Mosaic II, a menagerie of creatures lives behind another, each
group struggling in our perception to emerge to the fore and be seen as objects.
What at first appears as an odd space above a humanoid figure and at the
focus of a ring of grotesque fish can be perceived a moment later as a white
elephant surrounded by oddly shaped shadows. It is this duality, the possibility
of describing one and the same shape as a positive figure or as the complement
of the ground, that will serve as our metaphor for a new approach to natural
kinds.

To have a concrete image in mind, consider the two sides of Figure 1, both
of which depict the identical outline of a horse. To describe the shape of the
horse, we could specify the dark shaded region in the left-hand panel. That is,
we could specify what’s in the figure. Alternatively, we could characterize the
very same shape — the horse — by describing the ground around it. That is, we
could describe the contents of the region shaded black in the right-hand panel.
As we’ll see, the content of a given natural kind whose members support system
inductions can similarly be described in both positive and negative terms. It
turns out that the negative characterization offers substantial benefits.

2.2 Figure: the causal connections amongst variables

Systems of causally connected variables are also amenable to dual characteri-
zation. To see how this could be, I must first say something about about what
it is for two variables to be “causally connected.” What I have in mind is the
interventionist account of James Woodward, a type of manipualtionist theory
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of causation. Since the account has been developed in great detail elsewhere
(Woodward, 1997, 2000, 2001, 2003), I’ll provide only enough of a sketch of
the theory to suit the present purposes.

To begin with, the relation of causation is supposed to hold between vari-
ables. “...[V]ariables are properties or magnitudes that, as the name implies,
are capable of taking more than one value. Values (being red, having a mass
of 10kg) stand to variables (color, mass) in the relationship of determinates
to determinables” (Woodward, 2003, p39). Causal relations between variables
are defined, as the name of the account implies, in terms of interventions on
variables. Briefly, “...an intervention on X (with respect to Y) is a causal pro-
cess that directly changes the value of X in such a way that, if a change in
the value of Y should occur, it will occur only through the change in the value
of X and not in some other way ”(Woodward, 2001). The general notion of
cause I’ll work with is what Woodward calls a total cause:11 The variable X
is a total cause of the variable Y if and only if there is a possible interven-
tion on X that will change Y (Woodward, 2003, ch. 2). While precise, this
notion is broad enough to capture the essence of interventionist approaches to
causation, and from hereon I use“cause”as synonymous with total cause. To
invoke a standard example, atmospheric pressure is a cause in this sense of
both thunderstorms and the position of the dial on a barometer. Lowering the
pressure results in a change in dial position. But the barometer dial position
is not a cause of thunderstorms. Forcing your barometer dial to a different
position while leaving atmospheric pressure unchanged does not result in a
thunderstorm.

Interventionist causation admits of degrees in more than one sense. For
one, the framework comfortably accommodates probabilistic causation, such
that X causes Y just if intervening on X changes the probability distribution
in values over Y. For another, the causal relation itself can be stable under a
greater or lesser range of changes. There are two sorts of change to consider
(Woodward, 2000): (i) stability under changes of background conditions, and
(ii) interventions on the variables under consideration. With the respect to the
former, the causal relation between X and Y may be limited in time and space
to varying degrees. With regard to the latter, an association between X and Y
may be more or less fragile with respect to interventions on either variable. If
X is a cause of Y, then the association between X and Y will be stable under at
least some interventions on X, though not necessarily all. However, if X and Y
are commonly caused by Z, the correlation between X and Y is not stable under
interventions on X. Woodward calls causal relations that are stable under at
least some interventions “invariant generalizations.” Invariant generalizations
allow for system inductions. If X causes Y, then we can infer that, were X to
assume a different value, so too will Y. Insofar as science involves successful
system inductions, it involves discovery of invariant generalizations amongst
particular variable instances (e.g., concentration of chemicals A and B in this

11 I won’t worry here about Woodward’s definitions of direct, indirect, or contributing
causes. While these are useful concepts, we can get far enough with direct causation alone.
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particular beaker). Insofar as these generalizations can be extended to types of
variable (e.g., concentration of chemicals A and B), science involves discovery
of invariant generalizations amongst variable types.

2.3 Motivational examples

Given the above characterization of causation, one might attempt to charac-
terize natural kinds directly in terms of invariant generalizations— in other
words, causal kinds. Instead, for the reasons given above in discussing causal
kinds, I am going to define kinds in terms of properties of the causal structure
underlying such generalizations. More specifically, I will focus on actions that
are irrelevant to the casual structure in a very particular way. But before in-
troducing the technical machinery to make this proposal precise, it will help
to have in mind a couple of genuine examples from diverse scientific domains
of projectible kinds that have been characterized by what is irrelevant to the
causal structure of their members. That is, it will help to have a couple of
actual appeals to the causal ‘ground’ before introducing a theory of natural
kinds predicated on this notion. To this end, I’ll turn first to chemistry and
then to physics.

2.3.1 Chemical solutions

Chemists are great taxonomists of natural kinds in the sense I’ve been using
the term. There are many classes of chemical system that support both types
of induction. And as the metaphor of figure and ground suggests, there are
two complementary ways to characterize these systems. To focus on just one
corner of a vast subject, consider the subfield of qualitative analytical chem-
istry, which Fresenius called “...one of the main pillars upon which the entire
structure of the science rests” (1913, p2). The aim of chemical analysis is
to ascertain the chemical constituents of an unknown substance. Qualitative
analysis proceeds using a series of interventions whose consequences can be
assessed without complex instrumentation, usually by observing the presence
or absence of a precipitate in solution, color in a flame, the shade of a piece of
litmus paper, or sometimes by detecting the scent of a gas with a recognizable
odor, such as ammonia.

For many analytical tasks, there exist well-established procedures that take
the form of decision trees: first add reagent A and check to see if a precipitate
forms.12 If there is a precipitate, follow this or that sub-procedure to identify it.
If no precipitate forms, add reagent B, and so on. For example, the procedure

12 Precipitation is the sudden formation of a solid from solution that tends to sink or float
as a powder or collection of small crystals.
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for identifying the cations (positively charged ions) of simple compounds13

dissolved in water runs roughly as follows:14

1. Add hydrochloric acid to the solution.
(a) If a precipitate forms, then the cation in solution belongs to ‘Group I’

which includes lead, silver, and mercury. There is a sub-procedure to
follow to determine which of these it is.

(b) If no precipitate forms, then go on to step (2).
2. Add hydrosulfuric acid.
(a) If a precipitate forms, then the cation in solution belongs to ‘Group II’

which includes copper, lead, cadmium, bismuth, and mercury amongst
others. There is a sub-procedure to follow to determine which of these
it is.

(b) If no precipitate forms, then go on to step (3).
3. Neutralize the solution with ammonium chloride and ammonium hydrox-

ide, and add ammonium sulfide.
(a) If a precipitate forms, then the cation in solution belongs to ‘Group III’

which includes aluminum, chromium, iron, manganese, zinc, cobalt, and
others. There is a sub-procedure to follow to determine which of these
it is.

(b) If no precipitate forms, then the cation belongs to Groups IV or V which
contain barium, strontium, forms of calcium, magnesium, sodium, and
potassium.

The kinds I want to focus on are the so-called analytic groups (Group I,
Group II,...). These are clearly kinds that support a variety of inductions. In
particular, they behave similarly with respect to the presence of particular
anions (negatively charged ions) in solution. What’s true of one solution con-
taining cations from Group II concerning many chemical properties (e.g., a
disposition to form a precipitate) is true of the others. Viewed this way, each
group is characterized by a small set of coarsely described causal relations. So,
for instance, the cations of Group I are characterized by the fact that, when
included in a system also composed of dissolved hydrochloric acid, they cause
a precipitate to form.

But this is to focus on the figure. We could instead focus on the ground
and understand the groups as characterized by interventions to which they are
indifferent, manipulations which circumscribe the causal relations within each
such system. Consider the cations of Group IV and V. Or rather, consider
chemical systems — aqueous solutions in this case — that will be classified
as containing cations from Groups IV or V under the above scheme. These
systems can be described in terms of variables such as solute concentration
and precipitate mass, or perhaps more finely in terms of cation concentration,
anion concentration, and mass of undissolved solids. These causal relations

13 A ‘simple compound’ is just a compound that is composed of one acid and one base or
one metal and one non-metallic element.
14 The full procedure can be found in (Fresenius, 1913). For a more modern presentation,
see (Vogel, 1996).
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are entirely uninfluenced by the interventions described in steps (1) through
(3). That is, whatever the relation between the unknown cation concentration
and precipitate mass, it is uninfluenced by the addition of hydrochloric acid,
hydrosulfuric acid, ammonium chloride, ammonium hydroxide, or ammonium
sulfide.

2.3.2 Wigner’s particles

Non-relativistic quantum mechanics is probably the single most well-confirmed
physical theory in history, and the ‘elementary’ particle types of quantum
physics are projectible kinds if anything is. In a 1939 paper that has been re-
ferred to aptly as “epochal” (Gross, 1995), Eugene Wigner precisely delineated
the possible kinds of particle in a way that was both theoretically fruitful and
a paradigm example of what I have in mind by appealing to ground rather
than figure.

Wigner’s approach rests on the assumption that all physical systems are
‘invariant’ under the Poincaré group of transformations. Vaguely speaking, a
transformation is a change of a physical system. For instance, rigid rotation of
a system through fifteen degrees about a particular axis is a transformation.
Transformations of physical systems can be composed; one transformation fol-
lowed by another is itself a transformation. Often, these composition relations
have the structure of an algebraic group: (i) for each composition there is an
inverse that takes the system back to its starting state; (ii) there is a trans-
formation that amounts to “do nothing;” (iii) only the order of composition
matters, not how transformations are grouped; and (iv) the collection of trans-
formations is closed under the action of composition. The Poincaré group is
a collection of transformations with such a structure that includes rigid rota-
tions, rigid translations, and “Lorentz boosts” — shifts of constant velocity.
To say that physical systems are invariant under the Poincaré group is to say
that each transformation in the group leaves the laws governing each physical
system unperturbed. This invariance is why, for instance, a pendulum swings
the same whether you move it ten feet to the left, or place it on a train moving
at a constant speed.

Since every physical system is presumed to consist in part of causal rela-
tions that are invariant under the Poincaré transformations, Wigner realized
that this invariance could be treated as a condition or definition of a very broad
natural kind: physical system. More specifically, he equated each kind of ele-
mentary particle with the smallest kinds of quantum system that respect the
Poincaré group.15 Smallest here means that the space of states of the system
does not contain a subset of states that is closed under the transformations of
the Poincaré group.16

15 More precisely still, Wigner equated each kind of elementary particle with one of the
irreducible representations of the Poincaré group (which he calls the inhomogeneous Lorentz
group).
16 To be more accurate, Wigner equated irreducible representations of the Poincaré group
with what he called an “elementary system.” In a later paper with Newton, he argued that
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I’ve glossed over a great deal of detail, but my aim is simply to moti-
vate the approach to natural kinds expounded below. There are two things to
stress. First, Wigner understood particles as systems of variables — position,
four-momentum — that stand in causal relations with one another, not as
substances with a set of essential properties. This accords with the way I have
been speaking about the targets of scientific induction. System inductions in-
volve generalizations about particular systems, while kind inductions — those
which invoke natural kinds — generalize across such systems. The account of
natural kinds I am urging similarly deals in systems. Second, Wigner sorts
these systems into kinds according to what is causally irrelevant.

2.4 Ground: Dynamical symmetries

The vague and metaphorical talk about the ‘ground’ of a set of causal relations
can be made concrete and precise via the notion of a dynamical symmetry.17

What we’re after is a precise characterization of the notion that a particular
change or manipulation is invisible to the causal connections amongst a col-
lection of variables — it is irrelevant to the determination of the joint state of
the system.

2.4.1 The special case of time

Consider first the special case in which time is included amongst the variables
of a system. I consider the case of temporal change first because the notion of a
dynamical symmetry seems particularly straightforward in the case of causal
systems for which time is considered a variable. This is partly an illusion
of familiarity. The most important and best known dynamical symmetries
in physics involve the evolution of a system through time. But there is also a
genuine simplicity in supposing that it is time, rather than some other variable,
that is supposed to advance in every experiment.

In plain language, a dynamical symmetry with respect to time is any inter-
vention that commutes with the process of time evolution. Put differently, if we
arrive at the same state by applying transformation σ and then evolving the
system through time, or by first evolving the system and then applying σ, then
σ is a dynamical symmetry. Note that a transformation need not preserve any
first-order properties of the system in order to be a dynamical symmetry—it
simply must commute with the process of evolving through time. Here is the
idea stated precisely:

the category of “elementary particle” is narrower, and carries the additional condition that
“...it should not be useful to consider the particle as a union of other particles”(Newton and
Wigner, 1949, p 400). The latter condition turns out to be problematic, so I’m sticking with
the broader category. This includes such things as hydrogen atoms in their ground state.
What’s not an elementary system? For one, any unstable particle (Wigner and Newton cite
the π-meson) that exhibits a change in state that is not relativistically invariant.
17 I am using “dynamical” in its broad sense of “active” or “potent”, not in the narrow
sense of involving forces.
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Definition 1 (Dynamical symmetry with respect to time) Let S be the
set of states of a system of variables (excluding time) and let Λt0,t1 : S → S be
the time-evolution operator which takes the system from state s0 at t0 to s1
at t1. A dynamical symmetry with respect to time is any operator σ : S → S

with the following property:

∀s∈S∀t1>t0∀t0 [Λt0,t1(σ(s)) = σ(Λt0,t1(s))] .

What does being a dynamical symmetry in time have to do with char-
acterizing the causal structure of a system? Joe Rosen, who has carefully
articulated this temporal notion of dynamical symmetry in a number of books
(Rosen, 1975, 1995, 2008), puts it this way:

A symmetry of the laws of nature is an indifference of the laws of
nature. For a transformation to be a symmetry transformation of the
laws of nature, the laws of nature must ignore some aspect of physical
states, and the transformation must affect that aspect only. A pair of
initial states related by such a transformation are treated impartially
by the laws of nature; they evolve into a pair of final states that are
related by precisely the same transformation. The laws of nature are
blind to the difference between the two states, which is then preserved
during evolution and emerges as the difference between the final two
states. (Rosen, 1995, p139)

Where Rosen speaks of “laws of nature,” I would substitute “invariant gener-
alizations” or “time-dependent causal structures,” but the point is the same.
However the other variables in a system are causally related to one another
through time, that relationship is blind to the changes induced by a dynamical
symmetry.

For an extremely simple example, consider a growing population of bacte-
ria described by only two variables: x, the number of bacteria in the growth
medium and, t, the time. Assuming the bacteria grow unchecked, these two
variables are connected by a simple relation: x = x0e

rt. This system has a
family of dynamical symmetry transformations of the form kx, one for each
value of a positive, real-valued parameter k. In other words, if you multiply
the initial population by k (by, say, adding bacteria from another stock) and
then let it grow for 10 minutes or let it grow for 10 minutes then multiply
the number of bacteria present by k, you end up with the same number of
bacteria in the growth medium. Thus, scaling by a constant is a dynamical
symmetry of the growth system—the bacterial growth process is insensitive to
the absolute number of bacteria present.

2.4.2 The general case

The case of dynamical symmetries with respect to time was special both be-
cause each system considered includes time as a variable, and because that
variable is singled out as a special index for states of the system. That is, we
considered the effects of a transformation on states separated by a difference
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in time. But in general, system inductions involve causal relations amongst
all sorts of variables, oftentimes without regard to time. We thus want a gen-
eral notion of dynamical symmetry that captures not just symmetries of time
evolution but of general causal relations. Fortunately, the notion of a dynam-
ical symmetry is easy to generalize in order to characterize all of the ways
in which causal structure can be blind to certain transformations, regardless
of whether the system includes time as an explicit variable. The following
definition expresses this generalization:

Definition 2 (Dynamical symmetry) Let V be a set of variables. Let σ

be an intervention on the variables in Int ⊂ V . The transformation σ is a
dynamical symmetry with respect to some index variable X ∈ V − Int if and
only if σ has the following property: for all xi and xf , the final state of the
system is the same whether σ is applied when X = xi and then an intervention
on X makes it such that X = xf , or the intervention on X is applied first,
changing its value from xi to xf , and then σ is applied.

For a simple, atemporal example, consider a hydrostatic system consisting
of two pressure gauges mounted to a vertical rail and submerged in a sealed
tank of water. Suppose that the vertical distance between them is adjustable
(say by sliding the upper sensor up or down) and that the pressure in the
tank can itself be adjusted. We might describe such a system in terms of three
variables: p1, the pressure at the location of the upper gauge, p2, the pressure
at the lower gauge, and h, the vertical distance between the gauges. These
variables are causally related to one another (in the interventionist sense),
and these relations can be expressed by the simple equation:

p2 − p1 = ρgh (1)

where ρ is the density of water and g is the gravitational acceleration near
the surface of the earth. If we consider h to be the index variable, then all
transformations of the pressure p1 of the form σ(p1) = p1 + c satisfy the
symmetry condition. To see this, suppose we begin with the gauges at the
same elevation. That is, we start with h = 0, p2 = p1 = P . Suppose we then
increase the temperature in the tank, thus increasing p1 to P +c. The pressure
at p2 is then p1+ρgh = P + c. Now if we increase h to a value of h = hf , then
the state of the system is given by p1 = P + c, p2 = P + c + ρghf . Suppose
instead we first increase h to hf , bringing the system to the state p1 = P ,
p2 = P + ρghf . Were we to then increase the pressure in the tanks such that
p1 = P + c, we would end up in precisely the same final state as before.
However, this is not the case for transformations of the form τ(p1) = kp1.
Thus, σ is a dynamical symmetry of the system while τ is not.

2.5 From symmetry structures to dynamical kinds

Dynamical symmetries can be combined to produce other dynamical sym-
metries. If σ1 and σ2 are both symmetries with respect to index variable v,
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then so is the operation of first applying transformation σ1 and then applying
σ2. We can denote this composite operation by σ2 ◦ σ1. Composition may be
extended indefinitely; the composite of any two symmetries is a symmetry.
Of course, it is generally not the case that the composite of two dynamical
symmetries is a new dynamical symmetry. Rigid rotation is a dynamical sym-
metry of, say, the Earth-Moon gravitational system. And while it is true that
the composite of any two rotations is also a symmetry, it is not true that each
composite is a unique operation. For example, the composite of a rotation
around a particular axis by 15◦ and a rotation around the same axis by 30◦

is the same as the transformation that rotates the system by 45◦. To put it
more concisely, σ15◦ ◦ σ30◦ = σ45◦ . There is therefore structure to the set of
transformations with respect to composition. We can identify this structure
with the composition function itself.18 This leads to the following definition:

Definition 3 (Symmetry structure:) The symmetry structure of a collec-
tion of dynamical symmetries, Σ = {σi|i = 1, 2, . . .} is given by the composi-
tion function ◦ : Σ ×Σ → Σ.

An example of a symmetry structure is the Poincaré group invoked by
Wigner (Wigner, 1939) to characterize physical systems. It includes rigid ro-
tations and translations. Transformations of these sorts compose in familiar
ways in three spatial dimensions. It also includes the Lorentz boosts which
have their own rules for composition.

Where does this leave us in the development of a theory of natural kinds? So
far, I’ve introduced the notion of a dynamical symmetry which makes precise
the intuitive notion of a causally irrelevant transformation. Any one system will
exhibit a characteristic collection of these symmetries, and this collection has
structure, an idea captured precisely in the notion of a symmetry structure.
Already it should be clear that symmetry structures are complementary to
causal structures. There is an intuitive sense in which describing a system’s
symmetry structure is like describing the ground behind the causal figure. But
we need one more technical notion to obtain the promised theory of natural
kinds. That’s the notion of a non-trivial symmetry structure:

Definition 4 (Non-trivial symmetry structure) A non-trivial symmetry
structure is one that contains the identity (i.e., “do nothing”) transformation
for each variable and choice of index, and, for at least one variable X relative
to some index variable T , is not isomorphic to the group of mappings from X

to itself (i.e., the set of all transformations of X).

The condition that a non-trivial symmetry structure contain the identity
transformation ensures that the variables in such a system are causally com-
plete, i.e., there are no external causes that influence the states of the system.
The second part of the condition rules out the possibility that the variables
instantiating the symmetry structure are causally disconnected. Non-trivial

18 For finite sets of transformations, the composition function is equivalent to a multipli-
cation table. But for infinite sets, we cannot write an explicit multiplication table.
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symmetry structures are the basis of the sort of kinds that have all the desired
features of natural kinds. That is, they circumscribe systems of variables that
are causally related in such a way as to be projectible. They constitute the
essences of dynamical kinds :

Definition 5 (Dynamical kind) A dynamical kind is a class of systems
of variables that share a set of dynamical symmetries that are related by a
non-trivial symmetry structure.

3 Dynamical kinds as natural kinds

3.1 Dynamical kinds, causes, and induction

The dynamical kind account offers complete answers to (P1) for both sys-
tem and kind induction. Specifically, it asserts that the distinguishing feature
of projectible systems is possession of a non-trivial symmetry structure, and
that any given non-trivial symmetry structure picks out a projectible kind. I
claimed at the outset that these answers were in some ways superior to those
of the causal kinds account. To see why requires us to draw out some of the
features of dynamical kinds.

First, possession of a non-trivial symmetry structure is sufficient to guaran-
tee that a system has a non-trivial causal structure, in the sense that it entails
at least one relation of total causation. The proof of this is trivial. Suppose
that the variables in a set V exhibit a non-trivial symmetry structure, but
that no variable in V is a total cause of another. Consider any three, X,Y, Z,
where Z may be the same as either X or Y . Since none of the variables is a
total cause of the others, there is no intervention on X that changes Y or Z

and no intervention on Z that changes X or Y (if distinct from Z). So the
order in which one transforms X by σ and intervenes on the index variable
Z is irrelevant. In either order, the final state is the same. As a consequence,
every possible transformation is a dynamical symmetry with respect to each
index variable — the symmetry structure is trivial. However, the symmetry
structure is, by hypothesis, not trivial, and so there must be at least one re-
lation of total causation in the set. The upshot is that non-trivial symmetry
structure is sufficient for securing the kinds of counterfactual robustness that
is needed for system induction.

Second, if the variables in a system are causally connected, then the system
will exhibit a non-trivial symmetry structure. In other words, possessing a
non-trivial symmetry structure is necessary for a system to contain variables
that stand in a relation of total causation, and thus for supporting system
induction. This claim is only slightly more taxing to prove, but I leave some
details to a footnote.19 Put roughly, it follows from the fact that at least one

19 If the variables are casually complete in the sense that there are no latent causal in-
fluences on the variables, then the identity transformation is a symmetry of the system for
every choice of variable and index. Therefore, the system possesses a symmetry structure.
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change in X produces a change in Y that we can find a transformation of Y
that fails to be a symmetry. The easy choice is a transformation that always
takes Y back to a particular state. It then clearly makes a difference whether
we apply this transformation and then change X , or change X and then apply
the transformation. Causal structure entails non-trivial symmetry structure.
So membership in a dynamical kind is necessary and sufficient for possessing
the kind of causal structure that underwrites projectibility in systems.

What of kind induction? It is the case that two systems with variables of
the same type bearing the same causal relations must have identical symmetry
structures. So sharing a symmetry structure is a necessary condition for sharing
a causal structure. Importantly, the converse is not true; sharing a symmetry
structure does not guarantee that two systems share the same causal structure.
This is a boon, not a liability. It means that the extension of a kind defined
by a symmetry structure—unlike a causal kind—can contain many specific
but importantly related causal networks. How are they related? They share
enough causal features to allow for limited kind inductions.

To sum up, symmetry structures are necessary and, to a limited extent,
sufficient for induction, but any given dynamical kind may contain instances
of a range of distinct (though related) causal structures. As an answer to (P1)
then, dynamical kinds evades the excessive narrowness of the causal kinds
account with respect to kind induction, while retaining its virtues vis-à-vis
system induction. What remains to be shown, however, is that dynamical
kinds offers something with respect to (P2) that can’t be found in the HPC,
SPC, essentialist, or causal kinds views. That issue will be taken up in Section
4. But first, some examples will help to give a sense of the way dynamical
kinds carve up the world.

3.2 Examples of dynamical kinds

We have already encountered some dynamical kinds recognized as important
by the scientific community. First, there are the analytical cation groups of
qualitative chemistry. As I suggested above, these groups are in effect defined
by symmetry structures on largely qualitatively valued variables (e.g., presence
or absence of a precipitate). Take, for instance, Group III. This is a dynamical
kind, each member of which is a system of qualitative variables with a non-
trivial symmetry structure characteristic of the kind. If we treat the variable
“concentration of hydrochloric acid” as the index variable (which can be in-

To show that it is not trivial, suppose that X is a total cause of Y . By definition, this means
that there are some values x0 and x1, such that an intervention taking X from x0 to x1

induces the value of Y to change. In general, the dependence of Y on X can be described
by a function, f(x, y0), where y0 is the value of Y when X = x0, i.e., f(x0, y0) = y0. Since
the change in X induces a change in Y , we know that f(x1, y0) 6= y0. Consider a trans-
formation, σ(y) = y0. Applying σ and then changing X takes us from a state (x0, y0) to
f(x1, σ(y0)) = f(x1, y0). Changing X and then applying σ takes us from a state (x0, y0)
to σ(f(x1, y0)) = y0 6= f(x1, y0). Thus, σ fails to be a symmetry, and so the symmetry
structure cannot be trivial.
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cremented by intervention from “none” to “high”), then one of the dynamical
symmetries characteristic of Group III is the transformation that changes the
concentration of hydrosulfuric acid from “none” to “high”. Whether we first
add hyrdosulfuric acid and then change the hydrochloric acid concentration,
or add hyrdochloric acid first and then change the hydrosulfuric concentration,
we obtain the same final state (a solution with no precipitate). However not
all transformations are symmetries. It matters whether we first “neutralize the
solution and add ammonium sulfide” and then “add hydrochloric acid” or first
add the acid and only afterward neutralize and add the ammonium sulfide.
The outcome (precipitate or no) will generally depend on the order.

For a paradigm example of a dynamical kind in terms of quantitative vari-
ables, one deeply entrenched in theoretical physics, consider the dynamical
kind that Wigner equated with ‘physical system’. The symmetry structure
that defines this kind is the Poincaré group. All rigid translations, rotations,
and Lorentz boosts are dynamical symmetries of physical systems, with re-
spect to time as the index variable. The behavior of the composition function
which defines the symmetry structure in this case is complex but well studied
(see, e.g., Haag, 1996). I won’t provide a full characterization, here. But, for
instance, composition of rigid translations is given by simple vector addition.

Finally, consider an example from biology. Earlier I mentioned the expo-
nential growth of some biological populations over time. Populations can be
viewed as systems instantiating two variable types: population size and time.
Populations exhibiting exponential growth belong to a dynamical kind that
is defined by a rather simple symmetry structure. The structure contains one
transformation of the form σk(x) = kx for every positive, real value of k. The
composition function is defined by the simple relation σk2

◦ σk1
= σk1k2

.20

3.3 Haven’t we been here before?

It’s no secret that symmetry is widely thought to provide the impetus and
guide to theoretical development in modern physics (Cao, 2010; Gross, 1996,
1995; Sundermeyer, 2014). As such, the explication of symmetry has been a
central concern of philosophers and philosophically-minded physicists (Brading
and Castellani, 2003; Castellani, 2002; Rosen, 2008). It is also no secret that
the term ‘symmetry’ covers a large number of distinct concepts (Hon and
Goldstein, 2008; Mainzer, 1996). One might reasonably worry then whether
the notion of a dynamical kind as I’ve introduced it—built as it is upon the
idea of a dynamical symmetry—is merely a well-played idea in a shiny new
case. Before exploring the putative advantages of the dynamical kinds view, I
want briefly to make the case that the view is in fact novel.

Of necessity I cannot survey either the complex history of symmetry con-
cepts, or the varied roles of symmetry in discussions of laws of nature and
natural kinds, read broadly. Rather, I will restrict myself to potential answers

20 Incidentally, the category of first-order chemical reactions mentioned earlier is a dynam-
ical kind characterized by an analogous family of scaling transformations.
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to (P1) and (P2). Relatively little has been said about what I’ve been calling
system induction. Wigner (1967) famously stressed that laws of nature would
never have been found were it not the case that they respect, at least ap-
proximately, some broad symmetries such as temporal and spatial translation.
Put differently, it’s unlikely we ever would have noticed sufficient stability in
systems to successfully generalize over their states, let alone over groupings of
such systems were it not for their indifference to absolute spatial and temporal
locations. But Wigner never extended this line of reasoning beyond the space-
time symmetries of physics. He certainly did not propose that we should in
general recognize projectible systems and kinds on the basis of their symmetry
structure.

With respect to categories appropriate for kind induction, there are only a
handful of explicit taxonomies that invoke symmetry. One is the classification
of crystals according to symmetries of the lattice structure, specifically the
isometric transformations by which two portions of the crystal can be brought
into congruence (see, e.g., Giacovazzo, 2011). But the symmetries involved in
this case are not instances of what I’ve been calling dynamical symmetries.
They concern operations that are only abstract — one never actually translates
or rotates a chunk of the crystal lattice, one only transforms coordinates of a
geometric representation of lattice. Another important taxonomy is Wigner’s
classification of particle types with irreducible representations of the Poincaré
group (see Section 2.3.2 above). This ultimately sorts particles with respect to
mass and spin. A finer classification based on values of the conserved quanti-
ties that correspond to so-called ‘internal symmetries’ of the electromagnetic,
weak, and strong forces yields the taxonomy of the Standard Model. So within
particle physics, it is true that something like what I’ve been calling symmetry
structure is explicitly used to sort systems into kinds and thus answer (P1).
However, as with system induction, this account of the projectible kinds—
if we are to read it as such—does not extend beyond ‘fundamental’ physics.
There has been no generalized attempt to apply this concept of grouping by
symmetry outside the realm of particle physics, and thus no general answer to
(P1).

It is with respect to (P2), the question of how we identify kinds that are
likely to be projectible, that symmetry takes center stage in physics, albeit indi-
rectly. A recipe often called the “gauge argument” has proven highly successful
in developing quantum field theories of (most) of the fundamental interactions
(electromagnetic, weak, and strong) between elementary particles (Martin,
2003; Moriyasu, 1983). Vaguely speaking, the idea is to take a non-interacting
or ‘free’ field theory of, say, electrically charged particles, and follow a recipe
for producing a theory that captures the dynamics of interaction. The first
step in the recipe is to note the presence of a ‘global’ symmetry of the phase
(a non-classical degree of freedom in quantum states). That is, scaling the
phase of the field at every point in space by the same constant is a symmetry
of the equations of motion. Next, we insist that this symmetry be extended to
a ‘local’ symmetry, such that scaling the phase by a function of position is also
a symmetry of the equations of motion. To satisfy this demand, we generally
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have to add a new field that interacts with the original free field and which
transforms in a very particular way under a change of phase.The result is,
after a bit of jiggering, a full theory of the dynamics of electromagnetism and
charged matter. The logical structure, physical content, and philosophical im-
portance of this gauge argument are all subject to intense debate (Belot, 2003;
Earman, 2002; Healey, 2007; Martin, 2002, 2003; Redhead, 2003). Nonetheless,
it is a clear example of symmetry being used to determine a set of possible
causal structures. There is some similarity here with the way in which dynam-
ical kinds relate to causal kinds in my view. Of course, there is little hope of
extending the gauge argument outside of physics, and so it cannot represent
a general answer to (P2).

The connection between causal laws and symmetry has not been lost on
philosophers or practitioners of other sciences.21 Charnov (1993), for instance,
has used invariants—quantities that remain fixed for a system under the ac-
tion of a symmetry transformation—to seek out new casual regularities in
evolutionary ecology. Charnov’s work, however, is the exception that proves
the rule—almost no one is defending symmetry methods as general tools of
discovery outside of physics. My project here thus differs in aim and scope
from the bulk of the existing work on symmetry. I aim to provide a general
theory of natural kinds, not a taxonomy for the objects of known or postulated
laws. Nor am I trying to give methods of theory construction that apply only
to particular sorts of physical theories. The scope of my account is intended to
encompass inductive practices generally, not just those of fundamental physics.

Finally, I should say something about where the concept of ‘dynamical
symmetries’ fits into the constellation of existing symmetry concepts. Wigner
(1967) groups symmetries into two kinds, and his division has become stan-
dard. The first kind, which he calls the “geometrical principles of invariance,”
include the spacetime symmetries thought to apply to all physical laws (and
thus all physical systems). These are the members of the Poincaré group. In-
sofar as we understand each transformation in an active sense as an actual
change of location, orientation, or speed of a system, the geometric symme-
tries are all instances of what I’ve called dynamical symmetries. Symmetries
of the second kind in Wigner’s scheme are related to “...specific types of inter-
action, rather to any correlation between events” (Wigner, 1967, p17). These
are the gauge principles or ‘internal symmetries’ sketched briefly above.22 It is
unclear whether gauge transformations should be viewed as physical transfor-
mations of a system. If not, these symmetries are not dynamical symmetries

21 In particular, there is ample discussion of the use of symmetry arguments in solving
physical problems, and of ’Curie’s Principle’—the claim that asymmetries in an effect must
be present in the cause (Ismael, 1997; Rosen, 1995; van Fraassen, 1990). These are rich
topics, but well beyond the scope of this essay.
22 Unfortunately, Wigner calls these “dynamic principles of invariance,” and, as with vir-
tually every term associated with symmetry, similar phrases have been used throughout the
literature to refer to a variety of distinct notions. Obviously, I am not helping the situation
with my choice of terminology. However, the phrase ‘dynamical symmetry’ seems best to
express what I have in mind and, in many of it’s previous uses, is not so far off from the
concept presented here. I beg the reader’s indulgence for further overloading the term.
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in my sense. This is not to say that my dynamical symmetries are coextensive
with Wigner’s geometrical transformations. to the contrary, any symmetry of
the dynamics of a system that involves physical transformation—regardless of
whether it is tied to a particular type of interaction—counts as a dynamical
symmetry in my view. There are many more of these besides the members of
Poincaré group.

It is clear that dynamical symmetries do not quit fit the standard classifi-
cation. The closest concept in the literature is Rosen’s notion of a “symmetry
of the laws of nature” (Rosen, 1995). However, our two notions of symmetry
coincide only insofar as time is taken to be the index variable. To my knowl-
edge, no one has generalized the notion to allow for arbitrary index variables.
So aside from pursuing different aims, the account of dynamical kinds given
here introduces some novel concepts as well. The question remaining is what
benefit this novelty brings.

4 Discovery and dynamical kinds

I suggested at the outset that what sets the dynamical kinds theory apart from
other characterizations of natural kinds is its immediate utility for achieving
successful kind inductions. The fact that being a member of a dynamical kind is
sufficient for a system to possess non-trivial causal structure suggests a method
for determining whether a particular kind is of the right sort to be projectible.
In fact, it suggests a general approach to discovering new projectible kinds.
The idea is simply to look for dynamical symmetries. More specifically, suppose
we have at our disposal a collection of instances of a range of variable types in
some new domain of investigation. For any one system of variable instances,
we can determine whether or not the system possesses a non-trivial symmetry
structure. This is often easier to spot than a specific causal structure; it does
not take a large sample size or many experiments to notice what has no effect
on the final state of the system given a manipulation of the initial state. Once
we strike upon a system that does have a non-trivial symmetry structure,
we can be confident that the token system will support system induction.
Furthermore, the symmetry structure associated with it defines a dynamical
kind that in turn will support kind induction. That is, some properties of
the token system will generalize to others of the same dynamical kind. Of
course, not all properties will generalize. Many specific causal structures can
exhibit the same symmetry structure, and it is impossible to know a priori
which properties will generalize. For example, there are lots of distinct ways
in which gravitating bodies can causally influence one another. Nonetheless,
there are facts that generalize across all gravitational systems.

What I’m suggesting is that one can approach the discovery of new kinds
of causal system in a manner similar to the way in which causal discovery algo-
rithms allow for the discovery of detailed causal structure. The latter include
a family of algorithms that infer which variables are direct causes of which by
examining the statistical relations of conditional independence amongst the
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variables (Spirtes et al, 2000). In this case, I am suggesting that the presence
and, to a large extent structure, of a system of causally related variables can be
spotted by looking for non-trivial symmetry structures. Sometimes it’s easier
to find the forest than the trees. In the remainder of this section, I describe
two ways of finding the forest.

4.1 The more things change...

The first approach to discovering dynamical kinds is direct: look for trans-
formations that are dynamical symmetries of a given system. To illustrate
with a concrete example, suppose we are attempting to learn about heat flow.
Specifically, we’re interested in the relation between temperature, u, position,
x, and time t in a thin rod of length, L. Suppose we keep the ends of the rod
at a fixed temperature, but insulate only the sides of the rod. We also deck
it out with a dense array of thermistors to measure temperature and resistive
heating elements to influence the temperature profile. Once we set a particu-
lar distribution of temperature along the rod at time t0, we wait until some
later time, t1, and then measure the new distribution of temperature over the
length of the rod. The hope, of course, is that by watching the temperature
change, we can learn about the desired dynamical relations. But this is usually
like searching for the proverbial needle in a haystack. It’s hard enough to fit
a curve to a given temperature profile let alone divine the functional relation
between this profile and another. The first panel on the left of Figure 2 shows
two different initial temperature profiles. The data is fake—created by adding
Gaussian noise to a smooth profile—but the laws used to evolve the profiles
through time to generate those appearing in the middle panel are realistic.
The point is that, for either the circles or the squares, it’s very difficult to
discern the details of the relationship between the initial temperature profile
on the left and the evolved profile on the right.

But suppose we know something about the relationship between the two
initial profiles. That is, suppose we know the transformation that was applied
to the initial profile marked with circles to get to that marked with squares. In
this case, it’s a simple scaling relation. The transformed initial conditions were
obtained from the original by scaling the temperature by a constant factor all
along the rod. To ascertain whether this transformation is in fact a symmetry,
we need only ask how the final two temperature distributions in the middle
panel relate. The panel on the right shows what we get if we plot the final
temperature of the experiment involving transformed initial conditions (the
squares) against the final values resulting from the original initial conditions
(the circles). It’s not hard to spot the linear relationship; the final distributions
are related to one another by a simple scaling, just like the initial conditions.
We’ve just discovered that scaling by a constant factor is a symmetry of our
unknown dynamics. This puts significant constraints on what the details of
those dynamics can look like. Furthermore, this success does not depend on
some unusual feature of heat dynamics. Quite generally, symmetries of a given
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Fig. 2: Left : Plots of initial temperature at time t0 as a function of position
along a heated rod for two different experiments. The profile marked by squares
is the result of a transformation that scales the temperature along the rod
by a constant factor relative to the profile marked with circles. Middle: The
temperature profiles that result at a later time, t1, given the two initial profiles
on the left. Right : A plot of the final temperatures in the experiment with
transformed initial conditions (squares) versus the final temperatures resulting
from the unperturbed experiment (circles). A straight line indicates that the
final states are also related by a scaling transformation.

dynamics depend upon fewer free parameters than the dynamics themselves.
This reduced complexity makes them easier to spot in systematic search, just
like the linear relationship between the final temperature distributions in our
two heat experiments.

I haven’t the space for detailed case studies, but I can at least point to a
couple of important discoveries made through the direct symmetry approach.
The first is the role of ‘isospin’ in working out the dynamics of the strong
force. The discovery of isospin was the discovery that whatever held nucleons
together was approximately indifferent to their electrical charge—swapping a
proton for a neutron is a dynamical symmetry of the then unknown strong
force. This observation led to the theoretically fruitful approach of treating
the neutron and proton as two states of the same particle.23 Another exam-
ple is the seminal work of Osborne Reynolds on the inception of turbulence
in pipe flows (Reynolds, 1883). In a series of delicate experiments involving,
amongst other things, streams of dye injected into the center of the flow of
water through a glass pipe, Reynolds found that the velocity at which the
flow became turbulent (vc) was proportional to the kinematic viscosity of the
water (ν) and inversely proportional to the diameter of the pipe (D). In other
words, the number Re = vcD

ν
is a constant. This relation encodes an entire

family of symmetries of the unknown solutions to the equation of motion. One
could, for instance, scale up the velocity while reducing the diameter, and
end up with a flow that evolves in the same way. The symmetries encoded in
Reynolds’s scaling relation have been enormously useful in working out the
details of viscous fluid flow in a wide range of circumstances.

23 This story is recounted in Pais (1986).
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4.2 ...the more they stay the same

The second approach to discovery through symmetry is somewhat indirect.
This approach to discovery is built upon the concept of an invariant of the
motion. An invariant of the motion is a function of the variables in a causal
system the value of which does not change through time. For instance, linear
momentum, angular momentum, and the Lagrangian are all invariants of the
motion of systems obeying classical mechanics—they are all conserved through
time. There is an intimate connection between invariants and dynamical sym-
metries. Emmy Noether24 proved, coarsely speaking, that if a system exhibits
a continuous (differentiable) family of dynamical symmetries with respect to
time, then it possess an invariant of the motion. More broadly, the conserva-
tion of a non-trivial function of the dynamical variables implies the presence
of a dynamical symmetry. So an alternate approach to discovering symmetry
structures is to look for conserved quantities, for what stays the same.

This approach has already met with significant success. This is essentially
the approach of Charnov (1993) in his work on invariants of organism life-
histories. It’s also the basis for some recent work in artificial intelligence. The
automated discovery algorithm of Schmidt and Lipson (2009) takes time-series
data and performs a search through a space of symbolic mathematical expres-
sions, looking for non-trivial invariants of the motion. Not every invariant is
associated with a family of dynamical symmetries. The most innovative as-
pects of Schmidt and Lipson’s work involve techniques for sifting invariants to
isolate those indicative of a dynamical symmetry, and thus informative about
the causal structure of the system under investigation. The salient point is
that they actually built a system for the automated discovery of projectible
kinds on the basis of symmetries. Given that their method looks only for dy-
namical symmetries with respect to time and only for symmetries connected
with invariants of the motion, this is only the beginning of what is possible.

I concede that the symmetry approaches to discovery I’ve described are
more like sketchy promises than demonstrations. Only development and im-
plementation of the methods will demonstrate conclusively that symmetry
gives us a handle on projectibility, that dynamical kinds are the natural kinds.
That is work for another time.

5 Conclusion

The questions at issue are simple: what distinguishes the projectible kinds
from the non-projectible, and is there a method for identifying such kinds?
The answers, of course, are notoriously obscure. I have tried in this essay to
rough out a different perspective on the matter. With regard to the first ques-
tion, I suggest that the projectible kinds are dynamical kinds. While related to
previous accounts of so-called natural kinds, the central innovation of the dy-
namical kinds approach is a shift of focus from causal relations to properties of

24 See (Neuenschwander, 2011) for a thorough discussion.
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causal relations. Specifically, the emphasis is placed on dynamical symmetries
— transformations to which a given causal structure is blind or indifferent.
My emphasis on symmetry is new to the natural kinds literature, but hardly
original in the art and philosophy of science. As Wigner (1967), Rosen (1995),
and others have stressed, the presence and recognition of symmetries is es-
sential to scientific discovery. Mechanics would be intractable if the laws of
physics were not indifferent to the position, orientation, or temporal location
of physical systems. Chemistry would be a chaos if every reaction depended
upon every detail of the environment or the time of day.

I have argued, however, that symmetries can do more for us than merely
set the stage for discovery. An explicit focus on dynamical symmetries illumi-
nates otherwise mysterious aspects of inductive success. Dynamical symme-
tries hang together in symmetry structures. Non-trivial symmetry structures
are both necessary and sufficient for the presence of the kinds of causal rela-
tions that support the counterfactuals needed for successful induction. Thus, it
is no surprise that dynamical kinds — each of which is defined by a particular
symmetry structure — are projectible kinds. What is a bit surprising is that
once we recognize that the projectible kinds are dynamical kinds, this immedi-
ately suggests a number of methodological innovations. That is, adopting the
view that induction is successful when carried out in terms of dynamical kinds
suggests ways of modifying inductive practice. As I demonstrated in Section
4, they offer some promise for discovery. In many contexts it is easier to spot
a symmetry or the invariant quantity associated with one than to discern a
specific causal connection. Aside from the role symmetry has played in the
development of modern physics, automated discovery systems have already
been deployed that demonstrate the effectiveness of seeking the causal figure
by looking at the ground.

To bring us back around to the questions with which we began, the dy-
namical kinds account provides answers to both (P1) and (P2). At least some
projectible kinds are dynamical kinds, and we can identify them by means of
the discovery methods described above. As a consequence, I claim that the
dynamical kinds approach does a better job than its competitors at capturing
many or most scientifically salient kinds. In a sense, this account of natural
kinds is testable; it suggests adopting particular methods for efficient induc-
tion in scientific practice. Insofar as these methodological consequences bear
fruit, the dynamical kinds approach is that much more plausible as an answer
to (P2). Conversely, failure looks bad for the account. I do not have significant
evidence along these lines to present here. The point I want to stress is that
what evidence is already available favors the view.
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